首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Provirus integration site for Moloney murine leukemia virus (pim-1) is a proto-oncogene that is linked to the development and progression of several cancers. In this study, we evaluated pim-1 expression in tumors, tumor stroma and tumor-adjacent mucosa together as an independent prognostic factor for colon cancer patients. The study included 343 colon cancer patients. Immunohistochemical staining was used to detect pim-1. Multivariate cox regression for disease-free survival (DFS) were used to identify independent prognostic factors. Analytic hierarchy process (AHP) was used to calculate the weight of pim-1 in tumors, tumor stroma and tumor-adjacent mucosa in order to obtain a Pim-1 total score (PTS) for recurrence and survival. Kaplan–Meier DFS curves and OS curves for patients with different pim-1 expression levels were compared using the log-rank test. In this study, four independent prognostic factors were identified for colon cancer patients: pim-1 expression in tumors, tumor stroma, tumor-adjacent mucosa, as well as tumor stage. It has been established that clinical stage is an important prognostic factor for colon cancer patients. However, PTS can identify the patients who are likely to recur not only in the whole radical excision group but also within each stage of this group. Based on the results of this study we can conclude that the PTS combined with clinical staging system may be a better predictor of colon cancer patients’ prognosis than using the clinical stage system alone. Clinical Trials Gov. Number: ChiCTR-PRCH-12002842  相似文献   

5.
Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice.  相似文献   

6.
7.
Determination of stromal signatures in breast carcinoma   总被引:2,自引:0,他引:2       下载免费PDF全文
Many soft tissue tumors recapitulate features of normal connective tissue. We hypothesize that different types of fibroblastic tumors are representative of different populations of fibroblastic cells or different activation states of these cells. We examined two tumors with fibroblastic features, solitary fibrous tumor (SFT) and desmoid-type fibromatosis (DTF), by DNA microarray analysis and found that they have very different expression profiles, including significant differences in their patterns of expression of extracellular matrix genes and growth factors. Using immunohistochemistry and in situ hybridization on a tissue microarray, we found that genes specific for these two tumors have mutually specific expression in the stroma of nonneoplastic tissues. We defined a set of 786 gene spots whose pattern of expression distinguishes SFT from DTF. In an analysis of DNA microarray gene expression data from 295 previously published breast carcinomas, we found that expression of this gene set defined two groups of breast carcinomas with significant differences in overall survival. One of the groups had a favorable outcome and was defined by the expression of DTF genes. The other group of tumors had a poor prognosis and showed variable expression of genes enriched for SFT type. Our findings suggest that the host stromal response varies significantly among carcinomas and that gene expression patterns characteristic of soft tissue tumors can be used to discover new markers for normal connective tissue cells.  相似文献   

8.
Survival and recurrence rates in breast cancer are variable for common diagnoses, and therefore the biological underpinnings of the disease that determine those outcomes are yet to be fully understood. As a result, translational medicine is one of the fastest growing arenas of study in tumor biology. With advancements in genetic and imaging techniques, archived biopsies can be examined for purposes other than diagnosis. There is a great deal of evidence that points to the stroma as the major regulator of tumor progression following the initial stages of tumor formation, and the stroma may also contribute to risk factors determining tumor formation. Therefore, aspects of stromal biology are well-suited to be a focus for studies of patient outcome, where statistical differences in survival among patients provide evidence as to whether that stromal component is a signpost for tumor progression. In this review we summarize the latest research done where breast cancer patient survival was correlated with aspects of stromal biology, which have been put into four categories: reorganization of the extracellular matrix (ECM) to promote invasion, changes in the expression of stromal cell types, changes in stromal gene expression, and changes in cell biology signaling cascades to and from the stroma.  相似文献   

9.
Survival and recurrence rates in breast cancer are variable for common diagnoses, and therefore the biological underpinnings of the disease that determine those outcomes are yet to be fully understood. As a result, translational medicine is one of the fastest growing arenas of study in tumor biology. With advancements in genetic and imaging techniques, archived biopsies can be examined for purposes other than diagnosis. There is a great deal of evidence that points to the stroma as the major regulator of tumor progression following the initial stages of tumor formation, and the stroma may also contribute to risk factors determining tumor formation. Therefore, aspects of stromal biology are well-suited to be a focus for studies of patient outcome, where statistical differences in survival among patients provide evidence as to whether that stromal component is a signpost for tumor progression. In this review we summarize the latest research done where breast cancer patient survival was correlated with aspects of stromal biology, which have been put into four categories: reorganization of the extracellular matrix (ECM) to promote invasion, changes in the expression of stromal cell types, changes in stromal gene expression, and changes in cell biology signaling cascades to and from the stroma.  相似文献   

10.
11.

Background

Vascular endothelial cells contribute to the pathogenesis of numerous human diseases by actively regulating the stromal inflammatory response; however, little is known regarding the role of endothelial inflammation in the growth of human tumors and its influence on the prognosis of human cancers.

Methods

Using an experimental model of tumor necrosis factor-alpha (TNF-α)-mediated inflammation, we characterized inflammatory gene expression in immunopurified tumor-associated endothelial cells. These genes formed the basis of a multivariate molecular predictor of overall survival that was trained and validated in four types of human cancer.

Results

We report that expression of experimentally derived tumor endothelial genes distinguished pathologic tissue specimens from normal controls in several human diseases associated with chronic inflammation. We trained these genes in human cancer datasets and defined a six-gene inflammatory signature that predicted significantly reduced overall survival in breast cancer, colon cancer, lung cancer, and glioma. This endothelial-derived signature predicted outcome independently of, but cooperatively with, standard clinical and pathological prognostic factors. Consistent with these findings, conditioned culture media from human endothelial cells stimulated by pro-inflammatory cytokines accelerated the growth of human colon and breast tumors in immunodeficient mice as compared with conditioned media from untreated endothelial cells.

Conclusions

This study provides the first prognostic cancer gene signature derived from an experimental model of tumor-associated endothelial inflammation. These findings support the notion that activation of inflammatory pathways in non-malignant tumor-infiltrating endothelial cells contributes to tumor growth and progression in multiple human cancers. Importantly, these results identify endothelial-derived factors that could serve as potential targets for therapy in diverse human cancers.  相似文献   

12.
In a recent study, we have shown that in mammary tumors from mice lacking the Cav-1 gene, there are alterations in specific heat shock proteins as well as in tumor development. With this in mind, we have now investigated other proteins in the same mammary mouse tumor model (Her-2/neu expressing mammary tumors from Cav-1 wild type and Cav-1 null mice), to further comprehend the complex tumor-stroma mechanisms involved in regulating stress responses during tumor development. In this tumor model the cancer cells always lacked of Cav-1, so the KO influenced the Cav-1 in the stroma. By immunohistochemistry, we have found a striking co-expression of β-catenin and Her-2/neu in the tumor cells. The absence of Cav-1 in the tumor stroma had no effect on expression or localization of β-catenin and Her-2/neu. Both proteins appeared co-localized at the cell surface during tumor development and progression. Since Her-2/neu activation induces MTA1, we next evaluated MTA1 in the mouse tumors. Although this protein was found in numerous nuclei, the absence of Cav-1 did not alter its expression level. In contrast, significantly more PTEN protein was noted in the tumors lacking Cav-1 in the stroma, with the protein localized mainly in the nuclei. P-Akt levels were relatively low in tumors from both Cav-1 WT and Cav-1 KO mice. There was also an increase in nuclear NHERF1 expression levels in the tumors arising from Cav-1 KO mice. The data obtained in the MMTV-neu model are consistent with a role for Cav-1 in adjacent breast cancer stromal cells in modulating the expression and localization of important proteins implicated in tumor cell behavior.  相似文献   

13.
Several studies have confirmed that the breast tumor microenvironment drives cancer progression and metastatic development. The aim of our research was to investigate the prognostic significance of the breast tumor microenvironment in untreated early breast cancer patients. Therefore, we analyzed the association of the expression of α-SMA, FSP, CD105 and CD146 in CD34-negative spindle-shaped stromal cells, not associated with the vasculature, in primary breast tumors with classical prognostic marker levels, metastatic recurrence, local relapse, disease-free survival, metastasis-free survival and the overall survival of patients. In the same way, we evaluated the association of the amount of intra-tumor stroma, fibroblasts, collagen deposition, lymphocytic infiltration and myxoid changes in these samples with the clinical-pathological data previously described. This study is the first to demonstrate the high CD105 expression in this stromal cell type as a possible independent marker of unfavorable prognosis in early breast cancer patients. Our study suggests that this new finding can be useful prognostic marker in the clinical-pathological routine.  相似文献   

14.
Here, we discuss recent evidence that an absence of stromal Cav-1 expression in human breast cancers is a powerful single independent predictor of early disease recurrence, metastasis, and poor clinical outcome. These findings have now been validated in two independent patient populations. Importantly, the predictive value of stromal Cav-1 is independent of epithelial marker status, making stromal Cav-1 a new “universal” or “widely-applicable” breast cancer prognostic marker. We propose based on the expression of stromal Cav-1, that breast cancer patients could be stratified into high-risk and low-risk groups. High-risk patients showing an absence of stromal Cav-1 should be offered more aggressive therapies, such as anti-angiogenic approaches, in addition to the standard therapy regimens. Mechanistically, loss of stromal Cav-1 is a surrogate biomarker for increased cell cycle progression, growth factor secretion, “stemness”, and angiogenic potential in the tumor microenvironment. Since almost all cancers develop within the context of a stromal microenvironment, this new stromal classification system may be broadly applicable to other epithelial and non-epithelial cancer subtypes, as well as “pre-malignant” lesions (carcinoma in situ).  相似文献   

15.
For unknown reasons, advanced age remains a dominant predictor of poor clinical outcome for nearly all cancers. A decrease in the production of T cells by the thymus accompanies normal aging and parallels the age-dependent increase in cancer progression, but the specific impact of immunity on tumor progression in general is unknown. Glioblastoma multiforme (GBM), the most common primary brain neoplasm, is characterized by rapid age-dependent rates of progression and death. In this study, we show levels of CD8(+) recent thymic emigrants (RTEs) accounted for the prognostic power of age on clinical outcome in GBM patients. CD8(+) RTEs, typically a tiny proportion of CD8(+) T cells, remarkably accounted for the majority of tumor Ag-binding small precursor cells in PBMC from these patients and from healthy individuals. Large blasting tumor Ag-binding cells comprised of CD8(+) RTEs and phenotypically related cells were predominantly expanded following experimental vaccination of GBM patients. Quantification of CD8(+) RTE expansion in vivo correlated strongly with vaccine-elicited cytokine responses, and estimated numbers of expanding CD8(+) RTEs were consistent predictors of clinical outcome in vaccinated GBM patients. Targeted mutant (CD8beta(-/-)) mice specifically deficient in thymic CD8(+) T cell production uniquely displayed an age-specific decrease in glioma host survival as well as a strong correlation between host survival and thymus cellular production. These findings suggest that levels and function of newly produced CD8(+) T cells critically influence age-dependent cancer mortality and exert one of the strongest known influences on GBM outcome by predominantly mediating clinically beneficial antitumor immune responses.  相似文献   

16.
Stroma and the heparin-binding fibroblast growth factor (FGF) family influence normal epithelial cell growth and differentiation in embryonic and adult tissues. The role of stromal cells and the expression of isoforms of the FGF ligand and receptor family were examined during malignant progression of epithelial cells from a differentiated, slowly growing, nonmalignant model rat prostate tumor. In syngeneic hosts, a mixture of stromal and epithelial cells resulted in nonmalignant tumors which were differentiated and slowly growing. In the absence of the stromal cells, epithelial cells progressed to malignant tumors which were independent of the stroma and undifferentiated. The independence of the malignant epithelial cells from stromal cells was accompanied by a switch from exclusive expression of exon IIIb to exclusive expression of exon IIIc in the FGF receptor 2 (FGF-R2) gene. The FGF-R2(IIIb) isoform displays high affinity for stromal cell-derived FGF-7, whereas the FGF-R2(IIIc) isoform does not recognize FGF-7 but has high affinity for the FGF-2 member of the FGF ligand family. The switch from expression of exclusively exon IIIb to exclusively exon IIIc in the resident FGF-R2 gene was followed by activation of the FGF-2 ligand gene, the normally stromal cell FGF-R1 gene, and embryonic FGF-3 and FGF-5 ligand genes in malignant epithelial cells. Multiple autocrine and potentially intracrine ligand-receptor loops resulting from these alterations within the FGF-FGF-R family may underlie the autonomy of malignant tumor cells.  相似文献   

17.
18.
The role that stromal renal cell carcinoma (RCC) plays in support of tumor progression is unclear. Here we sought to determine the predictive value on patient survival of several markers of stromal activation and the feasibility of a fibroblast-derived extracellular matrix (ECM) based three-dimensional (3D) culture stemming from clinical specimens to recapitulate stromal behavior in vitro. The clinical relevance of selected stromal markers was assessed using a well annotated tumor microarray where stromal-marker levels of expression were evaluated and compared to patient outcomes. Also, an in vitro 3D system derived from fibroblasts harvested from patient matched normal kidney, primary RCC and metastatic tumors was employed to evaluate levels and localizations of known stromal markers such as the actin binding proteins palladin, alpha-smooth muscle actin (α-SMA), fibronectin and its spliced form EDA. Results suggested that RCCs exhibiting high levels of stromal palladin correlate with a poor prognosis, as demonstrated by overall survival time. Conversely, cases of RCCs where stroma presents low levels of palladin expression indicate increased survival times and, hence, better outcomes. Fibroblast-derived 3D cultures, which facilitate the categorization of stromal RCCs into discrete progressive stromal stages, also show increased levels of expression and stress fiber localization of α-SMA and palladin, as well as topographical organization of fibronectin and its splice variant EDA. These observations are concordant with expression levels of these markers in vivo. The study proposes that palladin constitutes a useful marker of poor prognosis in non-metastatic RCCs, while in vitro 3D cultures accurately represent the specific patient's tumor-associated stromal compartment. Our observations support the belief that stromal palladin assessments have clinical relevance thus validating the use of these 3D cultures to study both progressive RCC-associated stroma and stroma-dependent mechanisms affecting tumorigenesis. The clinical value of assessing RCC stromal activation merits further study.  相似文献   

19.
Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号