首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
The pattern of segmentation in the Drosophila embryo is controlled by at least 25 zygotically active genes and at least 20 maternally active genes. We have examined the pattern of expression of the protein product of the zygotically active segmentation gene fushi tarazu (ftz) at the cellular blastoderm stage in progeny of mutant females homozygous for each of six maternal-effect segmentation genes to observe the early effects of the maternal-effect genes on zygotic gene expression. The genes included exuperantia (a member of the anterior class of maternal-effect segmentation genes); staufen and vasa (members of the posterior class); and torso, trunk, and fs(1)N (members of the terminal class). Mutations in the genes caused a disruption of the normal pattern of ftz stripes in regions of the embryo where gene activity is known to be required. The ftz stripes provide a marker for segmental determination at the cellular blastoderm stage, making it possible to correlate aberrant patterns of ftz protein with defects in cuticle morphology at the end of embryogenesis. ftz protein expression in progeny of females mutant for combinations of the above genes was also examined. The changes in the ftz pattern in progeny of females doubly mutant for genes of the anterior and terminal classes or of the posterior and terminal classes can largely be understood as the result of the additive effects of the single mutations. In contrast, clearly nonadditive effects on the ftz pattern were seen when a mutation in a gene of the anterior class (exuperantia) was combined with mutations in posterior class genes.  相似文献   

3.
Inappropriate expression of the Drosophila pair-rule gene, fushi tarazu (ftz), causes cuticular pattern deletions apparently complementary to those in ftz larvae. We show that the two patterns actually originate similarly, in both cases affecting the even-numbered parasegmental boundaries. The reciprocal cuticular patterns derive from differing patterns of selector gene expression (homoeotic transformations). The primary effect of ectopic ftz activity is to broaden ftz domains by autocatalytic activation of endogenous ftz expression in an additional anterior cell. This activates engrailed (en) and represses wingless (wg) expression, consistent with their proposed combinatorial control by ftz (and other pair-rule genes) to define parasegmental primordia. We propose that the anterior margin of each ftz stripe is normally defined by the posterior even-skipped (eve) boundary.  相似文献   

4.
The distributions of the products of the homeotic genes Sex combs reduced (Scr) and Ultrabithorax (Ubx) and of the segmentation genes, fushi tarazu (ftz), even skipped (eve) and engrailed (en) have been monitored in polyhomeotic (ph) mutant embryos. None of the genes monitored show abnormal expression at the blastoderm stage in the absence of zygotic ph expression. Both Scr and Ubx are ectopically expressed in the epidermis of ph embryos, confirming the earlier proposal, based on genetic analysis, that ph+ acts as a negative regulator of Antennapedia (ANT-C) and bithorax (BX-C) complex genes. At the shortened germ band stage, en is also ectopically expressed, mainly in the anterior region of each segment. In contrast to these effects in the epidermis, the expression of en, Ubx, Scr and ftz is largely or completely suppressed in the central nervous system, whereas eve becomes ectopically expressed in most neurones.  相似文献   

5.
At least 13 genes control the establishment of dorsoventral polarity in the Drosophila embryo and more than 30 genes control the anteroposterior pattern of body segments. Each group of genes is thought to control pattern formation along one body axis, independently of the other group. We have used the expression of the fushi tarazu (ftz) segmentation gene as a positional marker to investigate the relationship between the dorsoventral and anteroposterior axes. The ftz gene is normally expressed in seven transverse stripes. Changes in the striped pattern in embryos mutant for other genes (or progeny of females homozygous for maternal-effect mutations) can reveal alterations of cell fate resulting from such mutations. We show that in the absence of any of ten maternal-effect dorsoventral polarity gene functions, the characteristic stripes of ftz protein are altered. Normally there is a difference between ftz stripe spacing on the dorsal and ventral sides of the embryo; in dorsalized mutant embryos the ftz stripes appear to be altered so that dorsal-type spacing occurs on all sides of the embryo. These results indicate that cells respond to dorsoventral positional information in establishing early patterns of gene expression along the anteroposterior axis and that there may be more significant interactions between the different axes of positional information than previously determined.  相似文献   

6.
7.
S Qian  M Capovilla    V Pirrotta 《The EMBO journal》1993,12(10):3865-3877
The core activity of the Ubx gene enhancer BRE (bx region enhancer) is encoded within a 500 bp module. bx DNA outside this active module increases the level of expression, expands the expression into ventro-lateral ectoderm and partially stabilizes the late expression pattern. The products of the gap genes hb and tll and of the pair-rule gene ftz bind to the 500 bp BRE module and control directly its initial pattern of expression. ftz enhances expression in even-numbered parasegments within the correct spatial domain whose boundaries are set by hb and tll. In addition, en and twi products activate the enhancer, probably directly. en broadens the parasegmental stripe while twi cooperates with ftz to enhance expression in the mesoderm. Binding sites for the five regulators are closely clustered, often overlapping extensively with one another. In vitro, hb blocks the binding of ftz and can also displace ftz protein pre-bound to an overlapping site, suggesting that competitive binding and/or interference by hb sets the initial boundaries of the domain of expression. Our results also suggest that this interaction is short-range and the long distance interactions among different enhancers may depend on each enhancer's ability to complex with the promoter.  相似文献   

8.
In Metazoa, Hox genes control the identity of the body parts along the anteroposterior axis. In addition to this homeotic function, these genes are characterized by two conserved features: They are clustered in the genome, and they contain a particular sequence, the homeobox, encoding a DNA-binding domain. Analysis of Hox homeobox sequences suggests that the Hox cluster emerged early in Metazoa and then underwent gene duplication events. In arthropods, the Hox cluster contains eight genes with a homeotic function and two other Hox-like genes, zerknullt (zen)/Hox3 and fushi tarazu (ftz). In insects, these two genes have lost their homeotic function but have acquired new functions in embryogenesis. In contrast, in chelicerates, these genes are expressed in a Hox-like pattern, which suggests that they have conserved their ancestral homeotic function. We describe here the characterization of Diva, the homologue of ftz in the cirripede crustacean Sacculina carcini. Diva is located in the Hox cluster, in the same position as the ftz genes of insects, and is not expressed in a Hox-like pattern. Instead, it is expressed exclusively in the central nervous system. Such a neurogenic expression of ftz has been also described in insects. This study, which provides the first information about the Hoxcluster in Crustacea, reveals that it may not be much smaller than the insect cluster. Study of the Diva expression pattern suggests that the arthropod ftz gene has lost its ancestral homeotic function after the divergence of the Crustacea/Hexapoda clade from other arthropod clades. In contrast, the function of ftz during neurogenesis is well conserved in insects and crustaceans.  相似文献   

9.
10.
Kankel MW  Duncan DM  Duncan I 《Genetics》2004,168(1):161-180
The pair-rule gene fushi tarazu (ftz) of Drosophila is expressed at the blastoderm stage in seven stripes that serve to define the even-numbered parasegments. ftz encodes a DNA-binding homeodomain protein and is known to regulate genes of the segment polarity, homeotic, and pair-rule classes. Despite intensive analysis in a number of laboratories, how ftz is regulated and how it controls its targets are still poorly understood. To help understand these processes, we conducted a screen to identify dominant mutations that enhance the lethality of a ftz temperature-sensitive mutant. Twenty-six enhancers were isolated, which define 21 genes. All but one of the mutations recovered show a maternal effect in their interaction with ftz. Three of the enhancers proved to be alleles of the known ftz protein cofactor gene ftz-f1, demonstrating the efficacy of the screen. Four enhancers are alleles of Atrophin (Atro), the Drosophila homolog of the human gene responsible for the neurodegenerative disease dentatorubral-pallidoluysian atrophy. Embryos from Atro mutant germ-line mothers lack the even-numbered (ftz-dependent) engrailed stripes and show strong ftz-like segmentation defects. These defects likely result from a reduction in Even-skipped (Eve) repression ability, as Atro has been shown to function as a corepressor for Eve. In this study, we present evidence that Atro is also a member of the trithorax group (trxG) of Hox gene regulators. Atro appears to be particularly closely related in function to the trxG gene osa, which encodes a component of the brahma chromatin remodeling complex. One additional gene was identified that causes pair-rule segmentation defects in embryos from homozygous mutant germ-line mothers. The single allele of this gene, called bek, also causes nuclear abnormalities similar to those caused by alleles of the Trithorax-like gene, which encodes the GAGA factor.  相似文献   

11.
S B Carroll  M P Scott 《Cell》1986,45(1):113-126
The establishment of the segmental body pattern of Drosophila requires the coordinated functions of three classes of zygotically active genes early in development. We have examined the effects of mutations in these genes on the spatial expression of the fushi tarazu (ftz) pair-rule segmentation gene. Mutations in four gap loci and in three pair-rule loci dramatically affect the initial pattern of transverse stripes of ftz-containing nuclei. Five other pair-rule genes and several other loci that affect the larval cuticular pattern do not detectably affect ftz expression. No simple regulatory relationships can be deduced. Rather, expression of the ftz gene depends upon the interactions among the different segmentation genes active at each position along the anterior-posterior axis of the early embryo.  相似文献   

12.
13.
The in vitro DNA binding properties of wild-type and mutant fushi tarazu homeodomains (ftz HD) have been analysed. The DNA binding properties of the ftz HD are very similar to those of the Antp HD. In interference experiments with mutant ftz HDs, close approaches between specific portions of the ftz HD peptide and specific regions of the binding site DNA were mapped. A methylation interference, G7 on the beta strand of BS2, is absent from the interference pattern with a mutant ftz HD [ftz (R43A) HD] in which the Arg43 at the second position of helix III (the recognition helix) is replaced by an Ala. This indicated that Arg43 of the ftz HD is in close proximity to the N7 of G7 of the beta strand of BS2 in the major groove. The methylation and ethylation interference patterns with the ftz (NTD) HD, in which the first six amino acids of the homeodomain were deleted, were extensively altered relative to the ftz HD patterns. Methylation of A11 and G12 of the alpha strand and ethylation of the phosphate of nucleotide A12 of the alpha strand no longer interfere with binding. This indicated that the first six amino acids of the homeodomain of ftz interact with A11 of the alpha strand in the minor groove, the phosphate of the nucleotide A13 on the alpha strand and G12 of the alpha strand in the adjacent major groove of BS2. In a binding study using a change of specificity mutation [ftz (Q50K) HD], in which the Gln50 at the ninth position of the third helix is exchanged for a Lys (as in the bicoid HD), and variant binding sites, we concluded that position 50 of the ftz HD and the ftz (Q50K) HD peptides interacts with base pairs at positions 6 and 7 of BS2. These three points of contact allowed us to propose a crude orientation of the ftz HD within the protein-DNA complex. We find that the ftz HD and the Antp HD peptides contact DNA in a similar way.  相似文献   

14.
Patterns of gene expression have been well documented during embryogenesis for the Drosophila melanogaster trunk segments. The same is not the case for the terminal segments. Here, gene expression patterns are followed during embryogenesis in the caudal segments (A8-A10 and the anal plate), with special attention paid to the novel regulation of engrailed (en). Chosen for this study are the pair-rule genes even-skipped (eve), fushi tarazu (ftz), runt (run), hairy (h), paired (prd) and odd-skipped (odd), and the segment polarity gene (en). The results demonstrate a progressive and coupled translocation of gene expression distally for all genes studied, suggesting that the most posterior segments are determined later than trunk segments.  相似文献   

15.
The examination of pair-rule gene expression in wild-type and segmentation mutant embryos has identified many, but not necessarily all, of the elements of the regulatory system that establish their periodic patterns. Here we have conducted a new type of search for previously unknown regulators of these genes by examining pair-rule gene expression in blastoderm embryos lacking parts of or entire chromosomes. This method has the advantage of direct inspection of abnormal pair-rule gene patterns without relying upon mutagenesis or interpretation of larval phenotypes for the identification of segmentation genes. From these experiments we conclude that: (i) most zygotically required regulators of the fushi tarazu (ftz), even-skipped (eve) and hairy (h) pair-rule genes have been identified, except for one or more loci we have uncovered on chromosome arm 2L; (ii) the repression of the ftz and eve genes in the anterior third of the embryo is under maternal, not zygotic control; and (iii) there are no general zygotically required activators of pair-rule gene expression. The results suggest that the molecular basis of pair-rule gene regulation can be pursued with greater confidence now that most key trans-acting factors are already in hand.  相似文献   

16.
17.
The DNA-binding homeobox motif was first identified in several Drosophila homeotic genes but also in fushi tarazu, a gene found in the Hox cluster yet involved in segmentation, not anteroposterior patterning [1]. Homeotic transformations are not seen in insect ftz mutants, and insect ftz genes do not have Hox-like expression except within the nervous system [2] [3]. Insect ftz homeobox sequences link them to the Antp-class genes and Tribolium and Schistocerca orthologs have Antp-class YPWM motifs amino-terminal to the homeobox [2] [3]. Orthologs of ftz cloned from a centipede and an onychophoran [4] show that it predates the emergence of the arthropods, but the inability to pinpoint non-arthropodan orthologs suggested that ftz is the product of a Hox gene duplication in the arthropod ancestor [4] [5]. I have cloned ftz orthologs from a mite and a tardigrade, arthropod outgroups of the insects [6]. Mite ftz is expressed in a Hox-like pattern, confirming its ancestral role in anteroposterior patterning. Phylogenetic analyses indicate that arthropod ftz genes are orthologous to the Lox5 genes of lophotrochozoans (a group that includes molluscs) [7] and, possibly, with the Mab-5 genes of nematodes and Hox6 genes of deuterostomes and would therefore have been present in the triploblast ancestor.  相似文献   

18.
19.
Mutations of the segmentation gene Krüppel (Kr) cause deletions of contiguous sets of body segments from the middle region of the Drosophila embryo. We have monitored expression in situ of three other genes implicated in the establishment of the body plan, namely hairy (h), fushi tarazu (ftz) and engrailed (en), in mutant Kr embryos. Our results show that the pattern of expression of all three genes depends upon Kr+ activity and are consistent with a hierarchical model of segmentation gene activity. In addition, we find that the initial expression of the homoeotic selector gene Ultrabithorax(Ubx) follows a novel pattern in Kr- embroys indicating a close integration of the spatial control of homoeotic and segmantation gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号