首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature.  相似文献   

2.
There is evidence that drinking water may be a source of infections with pathogenic nontuberculous mycobacteria (NTM) in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular colonization of protozoa. Our goal was to determine whether we could detect a reduction in the prevalence of NTM recovered from an unfiltered surface drinking water system after the addition of ozonation and filtration treatment and to characterize NTM isolates by using molecular methods. We sampled water from two initially unfiltered surface drinking water treatment plants over a 29-month period. One plant received the addition of filtration and ozonation after 6 months of sampling. Sample sites included those at treatment plant effluents, distributed water, and cold water taps (point-of-use [POU] sites) in public or commercial buildings located within each distribution system. NTM were recovered from 27% of the sites. POU sites yielded the majority of NTM, with >50% recovery despite the addition of ozonation and filtration. Closely related electrophoretic groups of Mycobacterium avium were found to persist at POU sites for up to 26 months. Water collected from POU cold water outlets was persistently colonized with NTM despite the addition of ozonation and filtration to a drinking water system. This suggests that cold water POU outlets need to be considered as a potential source of chronic human exposure to NTM.  相似文献   

3.
There is evidence that drinking water may be a source of infections with pathogenic nontuberculous mycobacteria (NTM) in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular colonization of protozoa. Our goal was to determine whether we could detect a reduction in the prevalence of NTM recovered from an unfiltered surface drinking water system after the addition of ozonation and filtration treatment and to characterize NTM isolates by using molecular methods. We sampled water from two initially unfiltered surface drinking water treatment plants over a 29-month period. One plant received the addition of filtration and ozonation after 6 months of sampling. Sample sites included those at treatment plant effluents, distributed water, and cold water taps (point-of-use [POU] sites) in public or commercial buildings located within each distribution system. NTM were recovered from 27% of the sites. POU sites yielded the majority of NTM, with >50% recovery despite the addition of ozonation and filtration. Closely related electrophoretic groups of Mycobacterium avium were found to persist at POU sites for up to 26 months. Water collected from POU cold water outlets was persistently colonized with NTM despite the addition of ozonation and filtration to a drinking water system. This suggests that cold water POU outlets need to be considered as a potential source of chronic human exposure to NTM.  相似文献   

4.
The complex ecology of free-living amoebae (FLA) and their role in spreading pathogenic microorganisms through water systems have recently raised considerable interest. In this study, we investigated the presence of FLA and amoebae-resisting bacteria (ARB) at various stages of a drinking water plant fed with river water. We isolated various amoebal species from the river and from several points within the plant, mostly at early steps of water treatment. Echinamoeba- and Hartmannella-related amoebae were mainly recovered in the drinking water plant whereas Acanthamoeba- and Naegleria-related amoebae were recovered from the river water and the sand filtration units. Some FLA isolates were recovered immediately after the ozonation step, thus suggesting resistance of these microorganisms to this disinfection procedure. A bacterial isolate related to Mycobacterium mucogenicum was recovered from an Echinamoeba-related amoeba isolated from ozone-treated water. Various other ARB were recovered using co-culture with axenic Acanthamoeba castellanii, including mycobacteria, legionella, Chlamydia-like organisms and various proteobacteria. Noteworthy, a new Parachlamydia acanthamoebae strain was recovered from river water and from granular activated carbon (GAC) biofilm. As amoebae mainly multiply in sand and GAC filters, optimization of filter backwash procedures probably offers a possibility to better control these protists and the risk associated with their intracellular hosts.  相似文献   

5.
Eight water distribution systems were sampled over an 18-month period (528 water and 55 biofilm samples) to measure the frequency of recovery and number of mycobacteria, particularly Mycobacterium avium and Mycobacterium intracellulare, in raw source waters before and after treatment and within the distribution system. The systems were chosen to assess the influence of source water, treatment, and assimilable organic carbon levels on mycobacterial numbers. Overall, mycobacterial recovery from the systems was low (15% of samples). Numbers of mycobacteria ranged from 10 to 700,000 CFU liter(-1). The number of M. avium in raw waters was correlated with turbidity. Water treatment substantially reduced the number of mycobacteria in raw waters by 2 to 4 log units. Mycobacterial numbers were substantially higher in the distribution system samples (average, 25,000-fold) than in those collected immediately downstream from the treatment facilities, indicating that mycobacteria grow in the distribution system. The increase in mycobacterial numbers was correlated with assimilable organic carbon and biodegradable organic carbon levels (r(2) = 0.65, P = 0.03). Although M. intracellulare was seldom recovered from water samples, it was frequently recovered (six of eight systems) in high numbers from biofilms (average, 600 CFU/cm(2)). Evidently, the ecological niches of M. avium and M. intracellulare are distinct.  相似文献   

6.
Drinking water distribution systems were analyzed for viable counts of mycobacteria by sampling water from waterworks and in different parts of the systems. In addition, loose deposits collected during mechanical cleaning of the main pipelines were similarly analyzed. The study covered 16 systems at eight localities in Finland. In an experimental study, mycobacterial colonization of biofilms on polyvinyl chloride tubes in a system was studied. The isolation frequency of mycobacteria increased from 35% at the waterworks to 80% in the system, and the number of mycobacteria in the positive samples increased from 15 to 140 CFU/liter, respectively. Mycobacteria were isolated from all 11 deposits with an accumulation time of tens of years and from all 4 deposits which had accumulated during a 1-year follow-up time. The numbers of mycobacteria were high in both old and young deposits (medians, 1.8 x 10(5) and 3.9 x 10(5) CFU/g [dry weight], respectively). Both water and deposit samples yielded the highest numbers of mycobacteria in the systems using surface water and applying ozonation as an intermediate treatment or posttreatment. The number and growth of mycobacteria in system waters correlated strongly with the concentration of assimilable organic carbon in the water leaving the waterworks. The densities of mycobacteria in the developing biofilms were highest at the distal sites of the systems. Over 90% of the mycobacteria isolated from water and deposits belonged to Mycobacterium lentiflavum, M. tusciae, M. gordonae, and a previously unclassified group of mycobacteria. Our results indicate that drinking water systems may be a source for recently discovered new mycobacterial species.  相似文献   

7.
Automated ribotyping as a tool for identifying of nontuberculous mycobacteria was evaluated. We created a database comprising of riboprints of 60 strains, representing 32 species of nontuberculous mycobacteria. It was shown that combined ribopatterns generated after digestion with EcoRI and PvuII were distinguishable between species of both slow-growing and rapid-growing mycobacteria. The findings were in good agreement with the 16S rRNA gene sequencing results, allowing correct identification of Mycobacterium lentiflavum isolated from clinical specimens and from biofilms growing in public water distribution system. The automated ribotyping was powerful in discriminating between M. lentiflavum and closely related species M. simiae and M. palustre. Mycobacterium lentiflavum strains from drinking water biofilms were resistant to two to four antimycobacterial drugs. The drinking water distribution system may, thus, be a source of nontuberculous mycobacteria resistant to multiple drugs.  相似文献   

8.
Nontuberculous mycobacteria (NTM) are ubiquitous and have been isolated from a variety of environmental sources, including water. Various NTM were isolated from biofilms in drinking water distribution systems in two urban and two semiurban areas in South Africa. Most of the isolates belonged to opportunistic pathogenic species of the NTM group, but none belonged to the Mycobacterium avium complex.  相似文献   

9.
Eight water distribution systems were sampled over an 18-month period (528 water and 55 biofilm samples) to measure the frequency of recovery and number of mycobacteria, particularly Mycobacterium avium and Mycobacterium intracellulare, in raw source waters before and after treatment and within the distribution system. The systems were chosen to assess the influence of source water, treatment, and assimilable organic carbon levels on mycobacterial numbers. Overall, mycobacterial recovery from the systems was low (15% of samples). Numbers of mycobacteria ranged from 10 to 700,000 CFU liter−1. The number of M. avium in raw waters was correlated with turbidity. Water treatment substantially reduced the number of mycobacteria in raw waters by 2 to 4 log units. Mycobacterial numbers were substantially higher in the distribution system samples (average, 25,000-fold) than in those collected immediately downstream from the treatment facilities, indicating that mycobacteria grow in the distribution system. The increase in mycobacterial numbers was correlated with assimilable organic carbon and biodegradable organic carbon levels (r2 = 0.65, P = 0.03). Although M. intracellulare was seldom recovered from water samples, it was frequently recovered (six of eight systems) in high numbers from biofilms (average, 600 CFU/cm2). Evidently, the ecological niches of M. avium and M. intracellulare are distinct.  相似文献   

10.
Nontuberculous mycobacteria (NTM) are ubiquitous and have been isolated from a variety of environmental sources, including water. Various NTM were isolated from biofilms in drinking water distribution systems in two urban and two semiurban areas in South Africa. Most of the isolates belonged to opportunistic pathogenic species of the NTM group, but none belonged to the Mycobacterium avium complex.  相似文献   

11.
We examined the variations of bacterial populations in treated drinking water prior to and after the final chlorine disinfection step at two different surface water treatment plants. For this purpose, the bacterial communities present in treated water were sampled after granular activated carbon (GAC) filtration and chlorine disinfection from two drinking water treatment plants supplying the city of Paris (France). Samples were analyzed after genomic DNA extraction, polymerase chain reaction (PCR) amplification, cloning, and sequencing of a number of 16S ribosomal RNA (rRNA) genes. The 16S rDNA sequences were clustered into operational taxonomic units (OTUs) and the OTU abundance patterns were obtained for each sample. The observed differences suggest that the chlorine disinfection step markedly affects the bacterial community structure and composition present in GAC water. Members of the Alphaproteobacteria and Betaproteobacteria were found to be predominant in the GAC water samples after phylogenetic analyses of the OTUs. Following the chlorine disinfection step, numerous changes were observed, including decreased representation of Proteobacteria phylotypes. Our results indicate that the use of molecular methods to investigate changes in the abundance of certain bacterial groups following chlorine-based disinfection will aid in further understanding the bacterial ecology of drinking water treatment plants (DWTPs), particularly the disinfection step, as it constitutes the final barrier before drinking water distribution to the consumer’s tap.  相似文献   

12.
Giardia and Cryptosporidium are important agents of water-borne parasitic diseases. In this work we have examined the recovery efficiency of two methods for concentrating Giardia cysts and Cryptosporidium oocysts from water: a membrane filtration method and a crossflow filtration method. Results demonstrated a higher recovery efficiency for crossflow filtration method in comparison to the membrane filtration method. In addition, Giardia cysts and Cryptosporidium oocysts concentration was evaluated in wastewater samples submitted to chemical flocculation or chemical flocculation followed by slow sand filtration. Results showed that slow sand filtration was capable of reducing the number of Giardia cysts, but not of Cryptosporidium oocysts in wastewater.  相似文献   

13.
Free-living amoebae (FLA) are ubiquitous organisms that have been isolated from various domestic water systems, such as cooling towers and hospital water networks. In addition to their own pathogenicity, FLA can also act as Trojan horses and be naturally infected with amoeba-resisting bacteria (ARB) that may be involved in human infections, such as pneumonia. We investigated the biodiversity of bacteria and their amoebal hosts in a hospital water network. Using amoebal enrichment on nonnutrient agar, we isolated 15 protist strains from 200 (7.5%) samples. One thermotolerant Hartmannella vermiformis isolate harbored both Legionella pneumophila and Bradyrhizobium japonicum. By using amoebal coculture with axenic Acanthamoeba castellanii as the cellular background, we recovered at least one ARB from 45.5% of the samples. Four new ARB isolates were recovered by culture, and one of these isolates was widely present in the water network. Alphaproteobacteria (such as Rhodoplanes, Methylobacterium, Bradyrhizobium, Afipia, and Bosea) were recovered from 30.5% of the samples, mycobacteria (Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium xenopi) were recovered from 20.5% of the samples, and Gammaproteobacteria (Legionella) were recovered from 5.5% of the samples. No Chlamydia or Chlamydia-like organisms were recovered by amoebal coculture or detected by PCR. The observed strong association between the presence of amoebae and the presence of Legionella (P < 0.001) and mycobacteria (P = 0.009) further suggests that FLA are a reservoir for these ARB and underlines the importance of considering amoebae when water control measures are designed.  相似文献   

14.
Eight waterworks in The Netherlands, which use surface water as their raw water source, were sampled repeatedly between November 1978 and June 1981. At five waterworks , 30 of 45 samples of raw water contained viruses. Of 55 samples of partially purified water, 11 were virus positive, including 8 after coagulation, sedimentation, and rapid sand filtration, 2 after storage, coagulation, sedimentation, transport chlorination, and rapid sand filtration, and 1 after storage in open reservoirs for 5 months. No viruses were detected in 100 samples of drinking water of 500 liters each from six waterworks . Most isolated viruses were typed, and a great variety of human enteroviruses were found, reflecting both pollution of raw water sources with sewage and vaccination with oral polio vaccine in neighboring countries.  相似文献   

15.
The occurrence of Aeromonas spp. and hygienic indicator organisms in raw and treated waters of five drinking water production plants in Flanders (Belgium) was surveyed over a period of 17 months. Aeromonads were isolated on ampicillin-dextrin agar (ADA) and further identified by gas-liquid chromatographic analysis of their cellular fatty acid methyl ester (FAME) content. ADA medium was found to be highly specific for the enumeration of Aeromonas spp. In general, Aeromonas counts were very low in untreated groundwater but numbered 104–106 colony-forming units per liter in open storage reservoirs for surface water. Aeromonas spp. were seasonally distributed with maximal densities occurring during the summer. The ecology of Aeromonas in the different waters was studied in relation to the physical, chemical, and microbiological water characteristics. Strongly positive correlations were observed between Aeromonas densities and heterotrophic plate counts, whereas a clearly negative relationship was found with dissolved oxygen. On average, 99.7% of the aeromonads were removed by flocculation-decantation followed by breakpoint chlorination, whereas 98.9% were removed by slow sand filtration. Flocculation-decantation without breakpoint chlorination did not reduce the microbial numbers. At three of four drinking water production plants tested, rapid sand filtration decreased the number of aeromonads and hygienic indicator organisms. At one plant, however, the numbers of Aeromonas and hygienic indicator organisms were high in the sand filter effluents. Increased numbers of aeromonads were also counted in the effluent of the activated carbon filters. Hence, inactivation of Aeromonas spp. by the current process technology appears not sufficient to exclude postchlorination. The survival of aeromonads in certain filter systems may be due to the growth of these bacteria on biodegradable organic material, provided by the decomposition from bacteria, algae, or other sources. Correspondence to: W. Verstraete  相似文献   

16.
A 16-month pilot study in two similar 1200 m water mains was conducted to determine the effects of granular activated carbon (GAC) filtration on drinking water quality in a distribution system. The results demonstrated that despite the higher initial disinfectant residue, the increase in bacteria in the conventionally treated and postozonated water was higher than in the water additionally treated with GAC filtration and u.v.-disinfection. Accordingly, a significant decline in assimilable organic carbon in the postozonated water was observed throughout the main, whereas in the GAC-filtered water this decline was shifted to the GAC filters. In the GAC-filtered water the conversion of ammonia to nitrite and nitrite to nitrate was more intense than in postozonated water. The findings confirm that GAC filtration increases the biological stability of drinking water even when treating cold humic waters in which biodegradation is generally limited by phosphorus. However, it appears that biological treatment favours the slow kinetics of nitrifying bacteria, thus allowing nitrification to occur even under cold water conditions in a distribution system.  相似文献   

17.
Environmental mycobacteria in Korea. I. Distribution of the organisms   总被引:3,自引:0,他引:3  
Environmental mycobacteria in Korea have been investigated by examining 54 soil, 111 house dust, 63 well water, and 98 sewage samples collected from 123 randomly selected areas in Korea during the fourth nationwide tuberculosis prevalence survey in 1980. A variety of mycobacteria were isolated from 76% of soil, 67% of sewage, 43% of well water, and 7% of house dust samples. Some samples yielded more than one species; thus 56 strains were obtained from soil, 107 strains from sewage, 48 strains from well water and 8 strains from house dust. Mycobacterium fortuitum was the most common species of environmental mycobacteria in Korea and the species was distributed equally in all types of samples tested. The M. terrae complex was also one of the common species of environmental mycobacteria and it seemed to be more abundant in water samples than in soil. Scotochromogenic slow growers M. scrofulaceum and M. gordonae were common microbes in soil and water samples, although the latter was more frequently detected in water samples. Scotochromogenic rapid growers M. flavescens and M.phlei, and photochromogenic rapid grower M. vaccae were isolated more frequently from sewage or water samples than from soil. Nonphotochromogenic rapid growers M. chelonei (chelonae) and M. smegmatis were isolated mostly from sewage and the former was rarely found in soil and well water samples. The clinically important species M. avium-intracellulare complex was found less frequently in all types of test samples.  相似文献   

18.
In contrast to the notorious pathogens Mycobacterium tuberculosis and M. leprae, the majority of the mycobacterial species described to date are generally not considered as obligate human pathogens. The natural reservoirs of these non-primary pathogenic mycobacteria include aquatic and terrestrial environments. Under certain circumstances, e.g., skin lesions, pulmonary or immune dysfunctions and chronic diseases, these environmental mycobacteria (EM) may cause disease. EM such as M. avium, M. kansasii, and M. xenopi have frequently been isolated from drinking water and hospital water distribution systems. Biofilm formation, amoeba-associated lifestyle, and resistance to chlorine have been recognized as important factors that contribute to the survival, colonization and persistence of EM in water distribution systems. Although the presence of EM in tap water has been linked to nosocomial infections and pseudo-infections, it remains unclear if these EM provide a health risk for immunocompromised people, in particular AIDS patients. In this regard, control strategies based on maintenance of an effective disinfectant residual and low concentration of nutrients have been proposed to keep EM numbers to a minimum in water distribution systems.  相似文献   

19.
We compared the NaOH-N-acetyl cysteine (NaOH-NALC) and the sulfuric acid decontamination procedure in the detection of mycobacteria using the Mycobacteria Growth Indicator Tube (MGIT). In total 219 sputum specimens were collected from 142 Zambian patients and subjected to mycobacterial culture. One half of the specimen was decontaminated with NaOH-NALC and the other half was decontaminated with sulfuric acid. From the 438 samples a total of 261 (60%) cultures yielded growth of mycobacteria, consisting of 22 different species. The sulfuric acid method was more successful than the NaOH-NALC method in recovering mycobacteria in MGITs (146 versus 115 respectively, p = 0.001). Of the 146 positive mycobacterial cultures recovered after sulfuric acid decontamination 28 were Mycobacterium tuberculosis, 84 nontuberculous mycobacteria (NTM) and 34 acid fast bacterial isolates which could not be identified to the species level. The 115 mycobacteria recovered by the NaOH-NALC method consisted of 34 M. tuberculosis strains, 55 NTM and 26 acid fast bacteria that could not be identified. The most frequently isolated NTM were Mycobacterium lentiflavum and Mycobacterium intracellulare. Comparing the two decontamination methods the recovery of NTM in the sulfuric acid group was significant higher than in the NaOH-NALC group (p = 0.001). In contrast, no significant difference was found for the recovery of M. tuberculosis. These results show that the decontamination method used affects the recovery of nontuberculous mycobacteria in particular.  相似文献   

20.
Aims:  We performed a preliminary assessment of the eukaryotic 18S rDNA diversity present in finished drinking water samples from three different surface water treatment plants supplying water to the city of Paris (France).
Methods and Results:  A molecular analysis was performed on a sample from each site based on sequencing of PCR amplified and cloned 18S ribosomal RNA genes. Overall, the 18S rDNA sequences combined from all samples could be affiliated to the Amoebozoa (20·8% of the phylotypes), Ciliophora (25%), Metazoa (33·3%), Fungi (8·3%), Cercozoa (4·2%) and unclassified eukaryotes (8·3%) groups.
Conclusions:  The 18S rDNA sequences affiliated to the Amoebozoa, Ciliophora and Metazoa lineages were found to be the most abundant phylotypes observed in the drinking water samples. Phylotypes found to be present in two, or all three, samples (41·7% of the total) may represent groups with members adapted to drinking water treatment plant (DWTP) ecosystem conditions.
Significance and Impact of the Study:  This study shows that finished drinking water can contain 18S rDNA sequences representing a variety of eukaryotic taxa. Further research is needed to better characterize the eukaryotic biodiversity of DWTPs and the effects of the finished drinking water diversity on the downstream water distribution network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号