首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saccharomyces cerevisiae, glucose activation of cAMP synthesis requires both the presence of the G-protein-coupled receptor (GPCR) system, Gpr1-Gpa2, and uptake and phosphorylation of the sugar. In a hxt-null strain that lacks all physiologically important glucose carriers, glucose transport as well as glucose-induced cAMP signalling can be restored by constitutive expression of the galactose permease. Hence, the glucose transporters do not seem to have a regulatory function but are only required for glucose uptake. We established a system in which the GPCR-dependent glucose-sensing process is separated from the glucose phosphorylation process. It is based on the specific transport and hydrolysis of maltose providing intracellular glucose in the absence of glucose transport. Preaddition of a low concentration (0.7 mM) of maltose to derepressed hxt-null cells and subsequent addition of glucose restored the glucose-induced cAMP signalling, although there was no glucose uptake. Addition of a low concentration of maltose itself does not increase the cAMP level but enhances Glu6P and apparently fulfils the intracellular glucose phosphorylation requirement for activation of the cAMP pathway by extracellular glucose. This system enabled us to analyse the affinity and specificity of the GPCR system for fermentable sugars. Gpr1 displayed a very low affinity for glucose (apparent Ka = 75 mM) and responded specifically to extracellular alpha and beta D-glucose and sucrose, but not to fructose, mannose or any glucose analogues tested. The presence of the constitutively active Gpa2val132 allele in a wild-type strain bypassed the requirement for Gpr1 and increased the low cAMP signal induced by fructose and by low glucose up to the same intensity as the high glucose signal. Therefore, the low cAMP increases observed with fructose and low glucose in wild-type cells result only from the low sensitivity of the Gpr1-Gpa2 system and not from the intracellular sugar kinase-dependent process. In conclusion, we have shown that the two essential requirements for glucose-induced activation of cAMP synthesis can be fulfilled separately: an extracellular glucose detection process dependent on Gpr1 and an intracellular sugar-sensing process requiring the hexose kinases.  相似文献   

2.
Under specific environmental conditions, the yeast Saccharomyces cerevisiae can undergo a morphological switch to a pseudohyphal growth pattern. Pseudohyphal differentiation is generally studied upon induction by nitrogen limitation in the presence of glucose. It is known to be controlled by several signaling pathways, including mitogen-activated protein kinase, cyclic AMP-protein kinase A (cAMP-PKA), and Snf1 kinase pathways. We show that the alpha-glucoside sugars maltose and maltotriose, and especially sucrose, are more potent inducers of filamentation than glucose. Sucrose even induces filamentation in nitrogen-rich media and in the mep2Δ/mep2Δ ammonium permease mutant on ammonium-limiting medium. We demonstrate that glucose also inhibits filamentation by means of a pathway parallel to the cAMP-PKA pathway. Deletion of HXK2 shifted the pseudohyphal growth pattern on glucose to that of sucrose, while deletion of SNF4 abrogated filamentation on both sugars, indicating a negative role of glucose repression and a positive role for Snf1 activity in the control of filamentation. In all strains and in all media, sucrose induction of filamentation is greatly diminished by deletion of the sucrose/glucose-sensing G-protein-coupled receptor Gpr1, whereas it has no effect on induction by maltose and maltotriose. The competence of alpha-glucoside sugars to induce filamentation is reflected in the increased expression of the cell surface flocculin gene FLO11. In addition, sucrose is the only alpha-glucoside sugar capable of rapidly inducing FLO11 expression in a Gpr1-dependent manner, reflecting the sensitivity of Gpr1 for this sugar and its involvement in rapid sucrose signaling. Our study identifies sucrose as the most potent nutrient inducer of pseudohyphal growth and shows that glucose inactivation of Snf1 kinase signaling is responsible for the lower potency of glucose.  相似文献   

3.
Plant cells utilize various sugars as carbon sources for growth, respiration and biosynthesis of cellular components. Suspension-cultured cells of azuki bean (Vigna angularis) proliferated actively in liquid growth medium containing 1% (w/v) sucrose, glucose, fructose, arabinose or xylose, but did not proliferate in medium containing galactose or mannose. These two latter sugars thus appeared distinct from other sugars used as growth substrates. Galactose strongly inhibited cell growth even in the presence of sucrose but mannose did not, suggesting a substantial difference in their effects on cell metabolism. Analysis of intracellular soluble-sugar fractions revealed that galactose, but not mannose, caused a conspicuous decrease in the cellular level of sucrose with no apparent effects on the levels of glucose or fructose. Such a galactose-specific decrease in sucrose levels also occurred in cells that had been cultured together with glucose in place of sucrose, suggesting that galactose inhibits the biosynthesis, rather than uptake, of sucrose in the cells. By contrast, mannose seemed to be metabolically inert in the presence of sucrose. From these results, we conclude that sucrose metabolism is important for the heterotrophic growth of cells in plant suspension-cultures.  相似文献   

4.
The utilization of mixtures of glucose and sucrose at nonlimiting concentrations was studied in batch cultures of two common thermophilic fungi, Thermomyces lanuginosus and Penicilium duponti. The sucrose-utilizing enzymes (sucrose permease and invertase) in both fungi were inducible. Both sugars were used concurrently, regardless of their relative proportion in the mixture. At the optimal growth temperature (50 degrees C), T. lanuginosus utilized sucrose earlier than it did glucose, but at a suboptimal growth temperature (30 degrees C) the two sugars were utilized at nearly comparable rates. The coutilization of the two sugars was most likely possible because (i) invertase was insensitive to catabolite repression by glucose, (ii) the activity and affinity of the glucose transport system were lowered when sucrose was included in the growth medium, and (iii) the activity of the glucose uptake system was also subject to repression by high concentrations of glucose itself. The concurrent utilization of the available carbon sources by thermophilic fungi might be an adaptive strategy for opportunistic growth in nature under conditions of low nutrient availability and thermal fluctuations in the environment.  相似文献   

5.
Summary The influence of various carbon sources and their concentration on the production of citrate by Aspergillus niger has been investigated. The sugars maltose, sucrose, glucose, mannose and fructose (in the given order) were carbon sources giving high yields of citric acid. Optimal yields were observed at sugar concentrations of 10% (w/v), with the exception of glucose (7.5%). No citric acid was produced on media containing less than 2.5% sugar. Precultivation of A. niger on 1% sucrose and transference to a 14% concentration of various other sugars induced citrate accumulation. This could be blocked by the addition of cycloheximide, an inhibitor of de novo protein synthesis. This induction was achieved using maltose, sucrose, glucose, mannose and fructose, and also by some other carbon sources (e.g. glycerol) that gave no citric acid accumulation in direct fermentation. Precultivation of A. niger at high (14%) sucrose concentrations and subsequent transfer to the same concentrations of various other carbohydrates, normally not leading to citric acid production, led to formation of citrate. Endogenous carbon sources were also converted to citrate under these conditions. A 14%-sucrose precultivated mycelium continued producing some citrate upon transfer to 1% sugar. These results indicate that high concentrations of certain carbon sources are required for high citrate yields, because they induce the appropriate metabolic imbalance required for acidogenesis.  相似文献   

6.
Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.  相似文献   

7.
Little is known about the effect of sugars in controlling secondary metabolism. In this study, sugars alone or in combination with their analogs were used to investigate their role in the production of the antimalarial drug, artemisinin, in Artemisia annua L. seedlings. Compared to sucrose, a 200% increase in artemisinin by glucose was observed. Different ratios of fructose to glucose yielded artemisinin levels directly proportional to increases in relative glucose concentration. When the glucose analog, 3-O-methylglucose, was added with glucose, artemisinin production was dramatically decreased, but hexokinase activity was significantly increased compared to glucose alone. In contrast, neither mannose nor mannitol had any significant effect on artemisinin yield. In comparison with 30 g/l sucrose, artemisinin levels were significantly reduced by 80% in the presence of 27 g/l sucrose + 3 g/l palatinose, which cannot be transported into cells through the sucrose transporter. Together these results suggest that both monosaccharide and disaccharide sugars are likely acting not only as carbon sources but also as signals to affect the downstream production of artemisinin, and that the mechanism of these effects appears to be complex.  相似文献   

8.
When Saccharomyces cerevisiae are grown on a mixture of glucose and another fermentable sugar such as sucrose, maltose or galactose, the metabolism is diauxic, i.e. glucose is metabolized first, whereas the other sugars are metabolized when glucose is exhausted. This phenomenon is a consequence of glucose repression, or more generally, catabolite repression. Besides glucose, the hexoses fructose and mannose are generally also believed to trigger catabolite repression. In this study, batch fermentations of S. cerevisiae in mixtures of sucrose and either glucose, fructose or mannose were performed. It was found that the utilization of sucrose is inhibited by concentrations of either glucose or fructose higher than 5 g/l, and thus that glucose and fructose are equally capable of exerting catabolite repression. However, sucrose was found to be hydrolyzed to glucose and fructose, even when the mannose concentration was as high as 17 g/l, indicating, that mannose is not a repressing sugar. It is suggested that the capability to trigger catabolite repression is connected to hexokinase PII, which is involved in the in vivo phosphorylation of glucose and fructose. Received: 5 May 1998 / Received revision: 3 August 1998 / Accepted: 8 August 1998  相似文献   

9.
The effects of exogenous sucrose, lactose, d -glucose, d (-)fructose, d -galactose, d -mannose, l -sorbose, l -arabinose and d -xylose on nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (GDH) levels, on anaerobic nitrite production and on respiratory O2 consumption were studied in excised roots of pea (Pisum sativum L. cv. Raman). Sucrose, glucose and fructose increase NR and GS levels and decrease GDH level (when compared with roots cultures without any sugar) at all concentrations used, but the extent of this effect varies. NR induction is enhanced by all sugars within the concentration range studied. Precultivation of roots with mannose and galactose results in an increase in anaerobic nitrite production in a medium consisting of phosphate buffer and KNO3. GS reaches its maximum at lower sugar concentrations, this fact being especially clear-cut with galactose. The decrease in GS level observed in roots cultured without sucrose is enhanced by higher sorbose concentrations. The increase in GDH level occurring in roots cultured without sucrose is depressed by low galactose and mannose concentrations but enhanced by high galactose, mannose, xylose and a wide range of sorbose concentrations. Lactose exerts only slight influence on the enzymes. The effects of sugars are in no case consistent with their effect on respiratory O2 consumption which is most pronounced with NR. The above results show that the effects of sugars on NR, GS and GDH are not mediated by one universal mechanism.  相似文献   

10.
《Plant science》1987,51(1):21-28
With the onset of the degradation of galactomannan, the galactose and mannose levels increased in the endosperm. The hydrolysis of galactomannan was more or less complete within the first 3 days of germination. In the cotyledons, sucrose was the predominant free sugar during the period of rapid galactomannan hydrolysis and reducing sugars (glucose + fructose) were present in only 10–20% proportion. The level of soluble acid invertase activity was in the order of embryonic axis > endosperm > cotyledons. On the basis of (a) absence of galactose and mannose, (b) high proportion of sucrose, (c) very fast conversion of [14C]glucose and [14C]mannose to [14C]sucrose and (d) very low levels of both soluble and bound invertases in cotyledons, we conclude that there is an active synthesis of sucrose in this tissue where disaccharide seems to be least hydrolysed during the period of galactomannan mobilization. A rapid hydrolysis of galactomannan in endosperm during early germination resulted in the synthesis of some starch, as a temporary reserve, in cotyledons. When the cotyledons entered the phase of first leaf formation, cotyledonary sucrose was hydrolysed giving rise to invert sugars. In the embryonic axis, the increase in the ratio of reducing sugars to sucrose coupled with a higher level of invertase, compared with sucrose-UDP glucosyl transferase, indicated that free sugars from the cotyledons are translocated to the embryonic axis as sucrose.  相似文献   

11.
In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras-mediated long-lasting cAMP increase. Addition of glucose to cells grown on a non-fermentable carbon source or to stationary-phase cells triggers a transient burst in the intracellular cAMP level. This glucose-induced cAMP signal is dependent on the G alpha-protein Gpa2. We show that the G-protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val-132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose-induced loss of heat resistance, which is consistent with its lack of glucose-induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose-sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK-controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE-controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose-sensing system must signal glucose availability for the Sch9-dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.  相似文献   

12.
The Galpha protein Gpa1 governs the cAMP-PKA signaling pathway and plays a central role in virulence and differentiation in the human fungal pathogen Cryptococcus neoformans, but the signals and receptors that trigger this pathway were unknown. We identified seven putative proteins that share identity with known G protein-coupled receptors (GPCRs). One protein, Gpr4, shares limited sequence identity with the Dictyostelium discoideum cAMP receptor cAR1 and the Aspergillus nidulans GPCR protein GprH and also shares structural similarity with the Saccharomyces cerevisiae receptor Gpr1. gpr4 mutants exhibited reduced capsule production and mating defects, similar to gpa1 mutants, and exogenous cAMP suppressed both gpr4 mutant phenotypes. Epistasis analysis provides further evidence that Gpr4 functions upstream of the Galpha subunit Gpa1. Gpr4-Gpr4 homomeric interactions were observed in the yeast two-hybrid assay, and Gpr4 was shown to physically interact with Gpa1 in the split-ubiquitin system. A Gpr4::DsRED fusion protein was localized to the plasma membrane and methionine was found to trigger receptor internalization. The analysis of intracellular cAMP levels showed that gpr4 mutants still respond to glucose but not to certain amino acids, such as methionine. Amino acids might serve as ligands for Gpr4 and could contribute to engage the cAMP-PKA pathway. Activation of the cAMP-PKA pathway by glucose and amino acids represents a nutrient coincidence detection system shared in other pathogenic fungi.  相似文献   

13.
The expression of cell cycle events in Caulobacter crescentus CB13 has been shown to be associated with regulation of carbohydrate utilization. Growth on lactose and galactose depends on induction of specific enzymes. Prior growth on glucose results in a delay in enzyme expression and cell cycle arrest at the nonmotile, predivisional stage. Dibutyryl cyclic adenosine 3',5'-monophosphate (AMP) was shown to stimulate expression of the inducible enzymes and, thus, the initiation of the cell cycle. beta-Galactosidase-constitutive mutants did not exhibit a cell cycle arrest upon transfer of cultures from glucose to lactose. Furthermore, carbon source starvation results in accumulation of the cells at the predivisional stage. The cell cycle arrest therefore results from nutritional deprivation and is analogous to the general control system exhibited by yeast (Hartwell, Bacteriol. Rev. 38:164-198, 1974; Wolfner et al., J. Mol. Biol. 96:273-290, 1975), which coordinates cell cycle initiation with metabolic state. Transfer of C. crescentus CB13 from glucose to mannose did not result in a cell cycle arrest, and it was demonstrated that this carbon source is metabolized by constitutive enzymes. Growth on mannose, however, is stimulated by exogenous dibutyryl cyclic AMP without a concomitant increase in the specific activity of the mannose catabolic enzymes. The effect of cyclic AMP on growth on sugars metabolized by inducible enzymes, as well as on sugars metabolized by constitutive enzymes, may represent a regulatory system common to both types of sugar utilization, since they share features that differ from glucose utilization, namely, temperature-sensitive growth and low intracellular concentrations of cyclic guanosine 3',5'-monophosphate.  相似文献   

14.
Detached inflorescences of guar (Cyamopsis tetragonoloba), each bearing 4 uniformly-developing pods at 42 days post anthesis (DPA), were cultured for 6 days in complete liquid medium manipulated with a fixed concentration of mannose and varying concentration of myo-inositol. Such inflorescences, but with 2 pods, were also maintained in the solutions of (i) glucose(U-14C) containing myo-inositol or phytohormones, and (ii) mannose(U-14C) containing galactose for 36 hr. Effect of such exogenously supplied metabolic mediators on interconversion of free sugars in pod wall, endosperm and cotyledons and galactomannan accumulation in endosperm was studied. Myo-inositol decreased, over control, the relative proportion of invert sugars in pod wall, endosperm and cotyledons and at lower concentration (27.75 mM) it decreased the level of free sugars in pod wall and galactomannan in endosperm. In all pod tissues, 14C from both glucose and mannose got incorporated into myo-inositol as well as various sugars and maximum incorporation occurred in sucrose. High concentration of total free sugars and their 14C activity in pod wall indicated that this pod tissue was a potent accumulator of free sugars. With myoinositol, the relative proportion of 14C from glucose into raffinose sugars of pod wall and endosperm increased with a simultaneous decrease in this incorporation into galactomannan of the latter. Accompanying this, relative proportion of 14C into hexoses and myo-inositol decreased in pod tissues. Galactose increased 14C incorporation from mannose into total free sugars, sucrose and galactomannan with a concomitant decline in the labelling of hexoses. IAA and ABA enhanced 14C incorporation from glucose into total free sugars and this enhancement was much higher with IAA than ABA. The latter inhibited 14C incorporation into galactomannan. Based on these results, it was suggested that myo-inositol at lower concentration was inadequate to mediate the metabolism of sugars and, thereby, galactomannan synthesis. Galactose and mannose exhibited a mutual beneficial effect on their transportation to pods. Phytohormones stimulated the accumulation of sucrose in pod wall for its obligatory unloading into the seed.  相似文献   

15.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

16.
The intestinal transport of three actively transported sugars has been studied in order to determine mechanistic features that, (a) can be attributed to stereo-specific affinity and (b) are common. The apparent affinity constants at the brush-border indicate that sugars are selected in the order, beta-methyl glucose greater than D-galactose greater than 3-O-methyl glucose, (the Km values are 1.23, 5.0 and 18.1 mM, respectively.) At low substrate concentrations the Kt values for Na+ activation of sugar entry across the brush-border are: 27, 25, and 140 mequiv. for beta-methyl glucose, galactose and 3-O-methyl glucose, respectively. These kinetic parameters suggest that Na+, water, sugar and membrane-binding groups are all factors which determine selective affinity. In spite of these differences in operational affinity, all three sugars show a reciprocal change in brush-border entry and exit permeability as Ringer (Na) or (sugar) is increased. Estimates of the changes in convective velocity and in the diffusive velocity when the sugar concentration in the Ringer is raised reveal that with all three sugars, the fractional reduction in convective velocity is approximately equal to the (reduction of diffusive velocity)2. This is consistent with the view that the sugars move via pores in the brush-border by convective diffusion. Theophylline reduces the serosal border permeability to beta-methyl glucose and to 3-O-methyl glucose relatively by the same extent and consequently, increase the intracellular accumulation of these sugars. The permeability of the serosal border to beta-methyl glucose entry is lower than permeability of the serosal border to beta-methyl glucose exit, which suggested that beta-methyl glucose may be convected out of the cell across the lateral serosal border.  相似文献   

17.
The concentrations of sugars in fruit vary with fruit development, environment and genotype. In general, there were weak correlations between the variations in sugar concentrations and the activities of enzymes directly related with the synthesis or degradation of sugars. This finding suggests that the relationships between enzyme activities and metabolites are often non‐linear and are difficult to assess. To simulate the concentrations of sucrose, glucose, fructose and sorbitol during the development of peach fruit, a kinetic model of sugar metabolism was developed by taking advantage of recent profiling data. Cell compartmentation (cytosol and vacuole) was described explicitly, and data‐driven enzyme activities were used to parameterize equations. The model correctly accounts for both annual and genotypic variations, which were observed in 10 genotypes derived from an interspecific cross. They provided important information on the mechanisms underlying the specification of phenotypic differences. In particular, the model supports the hypothesis that a difference in fructokinase affinity could be responsible for a low fructose‐to‐glucose ratio phenotype, which was observed in the studied population.  相似文献   

18.
Boevé JL  Wäckers FL 《Oecologia》2003,136(4):508-514
The suitability of various nectar and honeydew sugars as a food source for the polyphagous ant species M. rubra (L.) was studied. The sugars used included monosaccharides (fructose, glucose, galactose, mannose, rhamnose), disaccharides (sucrose, maltose, trehalose, melibiose, lactose) and trisaccharides (melizitose, raffinose, erlose). Single-sugar solutions were tested on ant workers in a long-term laboratory bioassay in which acceptance of the solutions and ant survival were recorded. The acceptance of the sugars was confirmed in a second bioassay in which feeding time was established. Enzymatic hydrolysis of sucrose, maltose and melibiose was investigated through HPLC analyses of workers fed these disaccharides. Sugar acceptance and feeding time were related to ant survival. Considering the monosaccharide units of which the sugars are composed, fructose seems especially suitable as a short-term energy source, while glucose appears to be used both directly and for storage. The presence of a galactose unit appears to reduce sugar suitability. It is suggested that the workers possess invertase and maltase and to a lesser degree also galactosidase. The gustatory perception is correlated with the profitability of sugars in further metabolic processes.  相似文献   

19.
Loss of dehydration tolerance coincides with a shift from heterotrophy to autotrophy during post-germination growth of spring wheat seedlings. This critical stage falls on the fifth day following imbibition. Till the sixth day of experiment light had no effect on dry weight of the seedlings but the survival of six day old seedlings was reduced by half upon dehydration. Germinating seeds in the presence of 5 mM glucose, fructose, mannose or sucrose did not promote seedling growth but either increase (glucose, fructose) or decreased (mannose, sucrose) the survival of dehydrated seedlings. Protection against dehydration by the former sugars was correlated, irrespective of the seedling age, with the decrease of sugar pool in seeds and increase in shoots (coleoptile and first leaf) and roots. The opposite changes were provoked by the sugars hampering seedling survival. Generally, survival of wheat seedlings was not correlated with the size of soluble sugar pool but its distribution and composition. Lower mobilisation of soluble sugars in seed, lower proportion of reduced sugars to sucrose and higher share of raffinose is characteristic for the tolerant four day old seedlings and those grown in the media containing glucose or fructose. The results presented indicate that higher proportion of reduced sugars to sucrose and lower share of raffinose in six day old seedlings seems to be associated with the loss of dehydration tolerance of these seedlings, despite heterotrophic character of growth.  相似文献   

20.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号