首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role of high light stress in a natural environment was studied on spinach plants ( Spinacia oleracea L. cv. Wolter) grown in the field during the winter season. Fluorescence induction (at 293 K and 77 K) of leaves was used to characterize the stress effects. Night frost with minimum temperatures between – 1.5°C and –7.5°C (i.e. above the'frost killing point'at ca. –11.5°C) led to impaired photosynthesis. This was seen as increased initial fluorescence (Fo), decreased ratio of variable to maximum fluorescence (FV/FM) and lowered rates of O2 evolution. The freezing injury was reversible within several frostless days. Exposure to high light (about 900 mol m–2 s–1) at chilling temperatures in the field caused photoinhibition, manifested as decreased variable fluorescence (FV) and FV/FM ratio without changes in FO. The photoinhibitory fluorescence quenching was not stronger after frost than after frostless nights; synergism between light stress and preceding freezing stress was not observed. Fluorescence induction signals at 77 K showed that FV of photosystems I and II decreased to the same extent, indicating increased thermal deactivation of excited chlorophyll. Photoinhibition was fully reversible at +4°C within 1 h in low light, but only partially in moderate light. Preceding night frosts did not affect the recovery. The photoinhibition observed here is regarded as a protective system of thermal dissipation of excess light energy.  相似文献   

2.
Chilling tolerance in eight taxa was estimated from field and controlled environment observations and compared to tolerance estimated using a variety of techniques. The controlled environment observations suggested that the eight taxa could be ranked from chilling tolerant to chilling sensitive in the order: pea ( Pisum sativum L. cv. Greenfeast), Passiflora edulis Sims., Passiflora ligularis Juss. and Passiflora quadrangularis L., pepino ( Solanum muricatum L.) cultivars Comeraya, Suma, Miski, and mungbean [ Vigna radiata (L.) R. Wilcz]; although the relationship between the passionfruit as a group and the pepinos was unclear.
The change in the variable component of chlorophyll fluorescence (FR) with time near 0°C in darkness was the most reliable method of ranking the plants according to relative chilling tolerance. It was also sufficiently sensitive to discriminate clearly between the closely related pepino cultivars. The Passiflora species and pea were not susceptible to short term reductions in FR, with or without a 20 min exposure to light. Exposure to light at temperatures near 0°C emphasised the reductions in FR in the more sensitive species. Pea was the only species capable of recovering a measurable FR after a 60 min exposure to white light.
Measurement of electrolyte leakage and ethylene evolution from leaf disks after a low temperature treatment could allow discrimination between closely related varieties, but not between genera. Catalase activity was reduced in all taxa in response to low temperature. However, both initial catalase levels and relative response to dark treatment at 20°C enabled the ranking of plants within the closely related subgroups according to susceptibility to chill injury.
No one method clearly distinguished chilling sensitivity over all taxa.  相似文献   

3.
Abstract. 1. Tiger beetles ( Cicindela ) of open habitats have served as model ectotherms in studies of the dependence of activity and habitat utilization on temperature. Potential departures from the cicindelid model were investigated in Cicindela sexguttata , a species inhabiting forests where thermal resources are patchy and ephemeral.
2. Body temperatures (Tb) were determined by inserting thermocouples into beetles immediately after observing specific behaviours in the field. Cicindela sexguttata elevated Tb by basking, foraged at a preferred Tb of 32.8 °C, and stilted, sun-faced, or sought shade when Tb exceeded 35 °C. Although these behaviours were typical of Cicindela , their set points were lower than those of species in more open habitats.
3. Illuminated substrates were utilized for basking and foraging. Beetles were dispersed throughout the forest floor in early spring, but became aggregated in light gaps when the canopy leafed out. Operative temperatures of thermal models indicated that beetles were unable to maintain the preferred Tb in shade and would not be able to maintain a preferred Tb in light gaps during the autumn, when adults are normally in diapause.
4. Beetles were confined to foraging in light gaps once the canopy was closed. Foraging rate and searching speed were independent of Tb, in contrast to other cicindelids. Adults rarely searched for prey, but ambushed small arthropods that alighted in the light gap. Dependence on patches of illumination as thermal resources may increase prey capture, intraspecific encounters, and risk of predation, and preclude foraging in the autumn when Cicindela species of open habitats are also active.  相似文献   

4.
5.
Abstract. Steady-state photosynthesis (Pn), post-illumination CO2 release rates (R), sucrose-phosphate synthase (SPS) activities, and levels of starch, sucrose and hexoses were measured in the source leaf of corn ( Zea mays L.) during a 16-h photoperiod at 800 μmol m 2 s 1. Pn and SPS activity remained constant. Carbohydrate pools increased at a linear rate, except the first and last hour of the photoperiod. Both the CO2 evolution rate at the moment of light removal (Rmax) and SPS activity decreased by one half after the onset of darkness (0 60 min). Sucrose diminished during this period by 40%, whereas the starch remained constant. Thereafter, starch mobilization began, followed by a gradual decline in leaf respiration. The average dark export rate was calculated to be 60% less than that during the day. Maintenance respiration (Rm) of an attached leaf after 48 h darkness was determined. Plants were illuminated for different intervals (e.g. 5, 10 or 20 min), each followed by dark periods sufficient for respiration to decline to Rm. The ratio of C assimilated in light to that released in dark was 6:1. After the 48-h dark period, the minimal period of illumination (Tmin) required to restore Pn and Rmax to the original level was determined. A mathematical analysis of the kinetics involved in the recovery of Pn and Rmax provided an estimate of turnover time (0.22h) and pool size 9.15 mmol m 2) for the newly fixed carbon.  相似文献   

6.
Manabe, K. 1987. Low temperature spectrophotometry of the phototransformation of Pfr to Pr, in pelletable pea phytochrome.
Low temperature spectrophotometry was used to study the phototransformation of Pfr to Pr in 1000–7000 g pelletable fractions extracted from dark grown pea ( Pisum sativum L. cv. Alaska) epicotyls which had been irradiated with red and then far-red light. At -170°C, far-red irradiation of the pelletable phytochrome which had been pre-irradiated with saturating fluence of red light before freezing caused formation of an intermediate (named I660), the difference spectrum of which showed a marked ab-sorbance decrease at 740 nm and a concomitant small increase at about 660 nm. The inermediate I660 was converted to another intermediate (I660) when it was warmed above -80°C. The difference spectrum of this intermediate showed a positive peak at 670 nm. This intermediate was photoconverted to Pfr by red irradiation and also underwent dark reversion to Pfr at -60°C. I660 formed Pr if the temperature was above -10°C. The basic features of the phytochrome intermediates resemble those obtained in vivo and in degraded purified phytochrome.  相似文献   

7.
Polyunsaturated fatty acids induce stomatal opening (Y. Lee, H. Lee, R. C. Crain, A. Lee and S. J. Korn. 1994. Cell Signal. 6: 181–186), but it is not known whether they function as second messengers in guard cells exposed to signals that open stomata. To test the hypothesis that phospholipase A2 (PLA2), which produces fatty acids and lysophospholipids, is involved in light signal transduction in guard cells, we treated epidermal peels of Commelina communis L. with PLA2 inhibitors and followed the changes in stomatal apertures in response to light. Stomatal opening by white, blue, or red light was inhibited by 2–3 different PLA2 inhibitors in concentration ranges that have been reported to inhibit PLA2 activity. However, the PLA2 inhibitors could not block stomatal opening induced by a polyunsaturated fatty acid. These results suggest that PLA2 functions as a signal transducer for both blue and red light in guard cells.  相似文献   

8.
The oxygen requirement for stomatal opening in maize plants ( Zea mays L. hybrid INRA 508) was studied at different CO2 concentrations and light intensities. In the absence of CO2, stomatal opening always required O2, but this requirement decreased with increasing light intensity. In darkness, the lowest O2 partial pressure needed to obtain a weak stomatal movement was about 50 Pa. This value was lowered to ca 10 Pa in light (320 μmol m−2 s−1).
On the other hand. in the absence of O2, CO2enabled stomatal opening to occur in the light, presumably due to the evolved photosynthetic O2. Thus, CO2, which generally reduced stomatal aperture, could induce stomatal movement in anoxia and light. The effect of CO2 on stomatal opening was closely dependent on O2 concentration and light intensity. Stomatal aperture appeared CO2-independent at an O2 partial pressure which was dependent on light intensity and was about 25 Pa at 320 umol m−2 s−1.
The presence of a plasmalemma oxidase, in addition to mitochondrial oxidase, might explain the differences in the O2 requirement at various light intensities. The possible involvement of such a system in relation to the effect of CO2 is discussed.  相似文献   

9.
Abstract. In a series of factorial experiments with cultivated Vitis californica Benth. (California wild grape) growth outdoors in full sun, we examined the effects of sunlight, temperature and water status on net CO2 uptake and PSH chlorophyll fluorescence at 77K. Exposure to either high light or high temperature caused reductions in PSH activity followed by partial or complete overnight recovery. Upon simulataneous exposure to high light and high temperature, PSH inhibition was severe and persistent. The maximum chlorophyll fluorescence (FM) and the ratio of variable to maximum fluorescence (Fv/FM) differed in their responses to combinations of light and temperature. At both low and high light. FM declined with increasing temperature over a wide temperature range, while Fv/FM exhibited a similar sensitivity to temperature only at high light. Net CO2 uptake declined by mid-afternoon and recovered by the next morning in most leaves, regardless of incident light or temperature. However, high-light leaves exhibited severe and lasting declines if temperatures exceeded 45°C. Water-stressed leaves exposed to high light exhibited greater reductions of net CO2 uptake than water-stressed leaves exposed to low light. However, the degree of light-dependent decline in PSH fluorescence (FM and Fv/FM) did not vary with water status, indicating that reduced PSH activity was not a primary cause of reduced carbon gain during water stress.  相似文献   

10.
Seedlings of spring wheat ( Triticum aestivum L. cv. Svenno) were cultivated at 20°C in continuous light or darkness with the roots in nutrient solutions for six days. The plants were starved for K+ during different periods of time to produce plants with various K+ status. In one cultivation light-grown plants were pretreated in darkness, and vice versa, before the uptake experiment. In all experiments, roots were put in a complete nutrient medium containing 2.0 m M K+ radiolabelled with 86Rb. The uptake time was varied (5, 60 or 120 min).
The K+ concentration in the roots, [K+]root, increased during the course of the uptake experiments, especially in light and at initially low [K+]root, At the same time K+ (86Rb) influx in the roots decreased. The simoidal relationship obtained between K+ (86Rb) influx and [K+]root was affected by these changes, and Hill plots gave various Hill coefficients, nH, depending on the duration of the uptake experiments. nH from three apparently straight line segments of the same plot, in different [K+]root - intervals, indicated a falling degree of interaction between the binding sites as [K+]root increased. For the dark-grown plants negative cooperativity could not be demonstrated.  相似文献   

11.
Photosynthetic and respiratory response of four Alaskan tundra species comprising three growth forms were investigated in the laboratory using an infrared gas analysis system. Vaccinium vitis-idaea , a dwarf evergreen shrub, demonstrated a low photosynthetic capacity: Pmax= 1 mg CO2 g dry wt−1 h−1; Topt < 10°C. Betula nana , a deciduous shrub, had a high relatively photosynthetic capacity: Pmax= 14 mg CO2 g dry wt−1 h−1; Topt 17°C. Two graminoid (sedge) species, Carex aquatilis and Eriophorum vaginalum , showed different responses. Carex showed a high photosynthetic capacity: Pmax= 20 mg CO2 g dry wt−1 h−1; Topt 22°C. Eriophorum vaginatum demonstrated an intermediate photosynthetic capacity of 4 mg CO2 g dry wt−1 h−1 at saturated light levels. Leaf dark respiration, up to 20°C, was approximately the same for all species. The patterns of root respiration among species was opposite to the trend in photosynthesis. Vaccinium vitis-idaea had the highest rate of root respiration and B. nana the lowest ( C aquatilis was not measured). Correlation between leaf nitrogen content (%) and photosynthetic capacity was high. Hypothesized growth form relationships explained differences in photosynthetic capacity between the deciduous shrub and evergreen shrub, but did little to account for differences between the two sedges. Differences in rooting patterns between species may affect tissue nutrient content, carbon flux rates, and carbon balance.  相似文献   

12.
Abstract. In northern Queensland, Australia, three experiments were conducted to determine the response of mosquitoes of the Anopheles farauti complex to CDC traps baited with four attractant combinations: octenol + C02 and light; octenol and light; CO, and light; or C02 and octenol without light. A CDC-modified updraft light-trap was also trialled, but did not significantly enhance collections of An.farauti sensu lato. The combination of light, octenol and C02 caught significantly more An.farauti s.l. (both An.farauti No. 1 and No. 2 sibling species) when compared to C02 and light alone. Only small numbers of the An.farauti complex were captured when CDC traps were baited with octenol alone, i.e. no light or C02.  相似文献   

13.
Photoconversion of the red-absorbing form of phytochrome (Pr) to the far-red-absorbing form of phytochrome (Pfr) and vice versa has been measured spectrophotometrically at 10°C in immobilized and soluble phytochrome (118 kdalton), prepared from 5-day-old etiolated oat seedlings ( Avena saliva L. cv. Sol II). The photostationary equilibrium φ= PfrPtot (with Ptot= total amount of phytochrome Pr+ Pfr) for red light depends on whether it is established by repetitive pulses (≥ 5 s) or by repetitive flashes (≥ 4 ms). In the wavelength region around 660 nm, a lower φ is reached with flashes as compared to that with pulses. This difference becomes negligible if the wavelength is shortened to the 600 nm region, and it also disappears if the fluence of each individual flash is reduced. In contrast, in long-wavelength red light and short-wavelength far-red light, a higher φ is reached with flashes than with pulses.
We relate the differences in φ for flash and pulse irradiation to photochromic systems between Pr and photoreversible intermediates in the phototransformation pathway Pr→ Pfr. Thus, light absorption by phytochrome intermediates can be limiting for the quantitative relationship between light signal and Pfr formed.  相似文献   

14.
The solubility of carbon dioxide (CO2) in microbiological media at different pH values, water activities ( aw ), temperatures, buffering capacities and ratios of headspace to media volumes was determined by using a coulometer. Buffering capacity and ratio of headspace to media volume were shown to be the major factors influencing the solubility of CO2 in modified atmosphere model systems. The growth inhibitory effects of different dissolved CO2 concentrations (0–50 μmol ml-1) were determined for Pseudomonas fragi at 8°C and 22 C. Pseudomonas fragi was shown to be strongly affected by the CO2 concentration in the media. A carbon dioxide concentration of 40 μmol ml-1 was needed to inhibit Ps. fragi at 8°C. The importance of measuring dissolved CO2 concentrations in modified atmosphere packaging applications was shown and the coulometer proved to be an excellent tool for this purpose.  相似文献   

15.
A transient CO2 burst from seedlings of some plant species was observed after a rapid temperature decrease. The magnitude of the CO2 release depended on initial temperature, oxygen concentration and light intensity. To obtain a maximal value of CO2 release, the temperature had to decrease by more than 8°C. The phenomenon was detected only in the light, and was confined to C3 species. It was inhibited by low oxygen concentration, indicating its possible connection with photorespiration.  相似文献   

16.
The growth of two species of marine diatom, Thalassiosira weissflogii (Grunow) and Thalassiosira pseudonana (Hustedt), was followed in batch cultures at four concentrations of dissolved inorganic carbon from N- and C-replete lag phase into N- and/or C-deplete stationary phase. Results describe the relationship between carbon-specific growth rate (μC) and chl a :carbon (chl a :C) and glutamine:glutamate (gln:glu) ratios with changes in the cells' nutritional status (N:C), during the utilization of either NO3 or NH4 + . The use of the gln:glu ratio as an index of N:C requires further clarification. For both species and N sources, N stress resulted in a decrease in μC, chl a :C, and N:C relative to μCmax values, whereas C stress resulted in a decrease in μC and an increase in chl a :C and N:C relative to μCmax values. Both species attained a chl a :C ratio of approximately 15 μg·g 1 at μCmax using either N source. However, this value was not necessarily an indicator of maximal growth rate. NC colimitation resulted in decreased μC to values less than 20% of μCmax with only minor changes in chl a :C and N:C relative to μCmax values. Chl a :C results suggest a similarity between the light stress and C stress responses of marine diatoms. The potential for C stress in the marine environment needs to be addressed.  相似文献   

17.
Using a laboratory-constructed system that can measure the gas exchange rates of two leaf surfaces separately, the light responses of the adaxial and abaxial stomata in intact leaves of sunflower ( Helianthus annuus L.) were investigated, keeping the intercellular CO2 concentration ( C i) at 300  µ L L−1. When evenly illuminating both sides of the leaf, the stomatal conductance ( g s) of the abaxial surface was higher than that of the adaxial surface at any light intensity. When each surface of the leaf was illuminated separately, both the adaxial and abaxial stomata were more sensitive to the light transmitted through the leaf (self-transmitted light) than to direct illumination. Relationships between the whole leaf photosynthetic rate ( A n) and the g s for each side highlighted a strong dependence of stomatal opening on mesophyll photosynthesis. Light transmitted through another leaf was more effective than the direct white light for the abaxial stomata, but not for the adaxial stomata. Moreover, green monochromatic light induced an opening of the abaxial stomata, but not of the adaxial stomata. As the proportion of blue light in the transmitted light is less than that in the white light, there may be some uncharacterized light responses, which are responsible for the opening of the abaxial stomata by the transmitted, green light.  相似文献   

18.
19.
Abstract. Two experiments are described which test the normal correlations that arise between stomatal conductance, net CO2 assimilation rate, and intercellular CO2 concentration (Ci), using whole shoots of Commelina communis L. In the first, conductance increased with decreasing Ci, at four different quantum flux densities, such that there was no unique relationship between conductance and quantum flux density or Ci, In the second, conductance increased hyperbolically with increasing quantum flux density while Ci was held constant at 466, 302, and 46 μmiolmol−1, and the response differed at each Ci. In neither experiment was conductance consistently related to net CO2 assimilation rate in the mesophyll. In both experiments high Ci suppressed the response of conductance to light, while there was a large response of conductance to light at low Ci, indicating an interaction between the effects of light and CO2 on stomata. The results show that the parallel responses of assimilation and conductance to light result in constant intercellular CO2 concentrations, and not that stomata maintain a 'constant Ci'.  相似文献   

20.
C4 photosynthesis at low temperatures   总被引:12,自引:8,他引:4  
Abstract. C4 plants grown in optimum conditions are, by comparison to C3, capable of higher maximum dry-matter yields and greater efficiencies of water and nitrogen use, yet they are rare outside the subtropics. Both latitudinal and altitudinal limits of C4 distributions correlate most closely with a mean minimum temperature of 8-10°C during the period of active growth. The possibility that the C4 process is inherently incapable of functioning at low temperatures is examined. The reversible effects of chilling on the quantum efficiency of C4 photosynthesis and the functioning of the individual steps in the C4 cycle are examined. Chilling also produces an irreversible loss of capacity to assimilate CO2 which is directly proportional to the light received during chilling. It is suggested that the reversible reduction in capacity to assimilate CO2 and the lack of an alternative pathway for the utilization of lightgenerated reducing power may make C4 species more prone to chilling-dependent photoinhibition. Laboratory studies and limited field observations suggest that this damage would be most likely to occur during photosynthetic induction at the temperatures and light levels encountered on clear, cool mornings during the spring and early summer in cool climates. Even those C4 species occurring naturally in cool climates do not appear fully capable of tolerating these conditions; indeed their growth patterns suggest that they may be adapted by avoiding 'rather than enduring' such conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号