首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
The possibility was investigated that dietary supplementation of the male chicken with long-chain polyunsaturated fatty acids of the n-6 and n-3 series may prevent the decrease in sperm output that normally occurs by 60 weeks of age. From 26 weeks of age, birds were raised on wheat-based diets supplemented with either maize oil (rich in linoleic acid, 18:2n-6), arasco oil (rich in arachidonic acid, 20:4n-6) or tuna orbital oil (rich in docosahexaenoic acid, 22:6n-3). The effects of the last two oils were investigated at two levels of vitamin E supplementation (40 and 200 mg kg(-1) feed). By 60 weeks of age, there was a small increase in the proportion of the main polyunsaturate of chicken sperm phospholipid, docosatetraenoic acid 22:4n-6, in chickens fed arasco oil diet compared with chickens given the maize oil diet, an effect that was potentiated at the higher dietary intake of vitamin E. Supplementation with tuna orbital oil significantly reduced the proportions of 20:4n-6 and 22:4n-6 in the sperm phospholipid and increased the proportion of 22:6n-3. The diet supplemented with tuna orbital oil and the lower level of vitamin E markedly depleted vitamin E from the tissues of the birds and decreased the concentration of vitamin E in the semen; these effects were largely prevented by the higher level of vitamin E in the diet. The susceptibility of semen to lipid peroxidation in vitro was increased in chickens fed arasco and tuna orbital oils with 40 mg vitamin E kg(-1) feed, but was reduced when 200 mg vitamin E kg(-1) feed was provided in the diet. The number of spermatozoa per ejaculate decreased by 50% between 26 weeks and 60 weeks of age in the birds fed the maize oil diet. This age-related decrease in the number of spermatozoa was almost completely prevented by feeding the birds with the oils enriched in either 20:4n-6 or 22:6n-3. Testis mass at 60 weeks of age was approximately 1.5 times greater in birds given of the arasco and tuna orbital oil diets compared with those given the maize oil diet.  相似文献   

2.
The phospholipids of avian spermatozoa are characterized by high proportions of arachidonic (20:4n-6) and docosatetraenoic (22:4n-6) fatty acids and are therefore sensitive to lipid peroxidation. α-Tocopherol and glutathione peroxidase [GSH-Px] are believed to be the primary components of the antioxidant system of the spermatozoa. The present study evaluates the effect of vitamin E and vitamin E plus Se supplementation of the cockerel diet on GSH-Px activity, vitamin E accumulation, and lipid peroxidation in the spermatozoa, testes, and liver. At the beginning of the experiment 75 Rhode Island Red cockerels were divided into five groups, kept in individual cages, and fed a wheat-barley-based ration balanced in all nutrients. Supplements fed to the different groups were as follows: vitamin E, 0, 20, 200, 20, and 200 mg/kg to groups 1–5, respectively, with groups 4 and 5 also receiving 0. 3 mg Se/kg. The vitamin E supplementation produced increased levels of α-tocopherol in semen, testes, and liver. The inclusion of the Se into the cock diet had a significant (P < 0.01) stimulating effect on GSH-Px activity in seminal plasma, spermatozoa, testes, and liver. The increased vitamin E concentration in the spermatozoa was associated with a reduction in their susceptibility to lipid peroxidation. Similarly, the increased GSH-Px activity provided enhanced protection against lipid peroxidation.  相似文献   

3.
The aim of the present experiment was to study the effect of fish oil and Vitamin E rich diets on semen production, sperm functions and composition in broiler breeders. The following parameters were measured: semen volume and concentration, sperm motility and viability, sperm susceptibility to induced peroxidation, sperm lipid and alpha-tocopherol contents. Dietary n-3 PUFA were successfully transferred into spermatozoan phospholipid by fish oil feeding according to the following main features: (a) the C22:6n-3 and C22:5n - 3 contents were increased, but C22:4n-6 remained the peculiar and major polyunsaturate; (b) the content and proportion of total PUFA did not change; (c) the proportional increase of n-3 PUFA was compensated by the decrease of n-6 PUFA, an increase in the proportion of n-9 fatty acids was also found. The sperm content of alpha-tocopherol was doubled increasing the dietary availability of the vitamin to 300 mg/kg of feed. The specific n-3 PUFA and Vitamin E enrichment of chicken sperm affected cell functions. Significant interactions between the two treatments were also found for some parameters. The best sperm quality condition in control sperm (rich mainly in n-6 PUFA) was found supplying 200mg Vitamin E/kg of feed to the male breeders, and in contrast in n-3 rich sperm supplying 300 mg Vitamin E/kg.  相似文献   

4.
Ultraprofound hypothermia (< 5 degrees C) induces changes to cell membranes such as liquid-to-gel lipid transitions and oxidative stress that have a negative effect on membrane function and cell survival. We hypothesized that fatty acid substitution of endothelial cell lipids and alterations in their unsaturation would modify cell survival at 0 degrees C, a temperature commonly used during storage and transportation of isolated cells or tissues and organs used in transplantation. Confluent bovine aortic endothelial cells were treated with 18-carbon fatty acids (C18:0, C18:1n-9, C18:2n-6, or C18:3n-3), C20:5n-3 or C22:6n-3 (DHA), and then stored at 0 degrees C without fatty acid supplements. Storage of control cells caused the release of lactate dehydrogenase (LDH) and a threefold increase in lipid peroxidation (LPO) when compared to control cells not exposed to cold. Pre-treating cells with C18:0 decreased the unsaturation of cell lipids and reduced LDH release at 0 degrees C by 50%, but all mono- or poly-unsaturated fatty acids increased injury in a concentration-dependent manner and as the extent of fatty acid unsaturation increased. DHA-treatment increased cell fatty acid unsaturation and caused maximal injury at 0 degrees C, which was prevented by lipophilic antioxidants BHT or vitamin E, the iron chelator deferoxamine, and to a lesser extent by vitamin C. Furthermore, the cold-induced increase in LPO was reduced by C18:0, vitamin E, or DFO but enhanced by DHA. In conclusion, the findings implicate iron catalyzed free radicals and LPO as a predominant mechanism of endothelial cell injury at 0 degrees C, which may be reduced by increasing lipid saturation or treating cells with antioxidants.  相似文献   

5.
The changes in lipid composition of spermatozoa and seminal plasma and changes in motility, viability, and morphological integrity of spermatozoa were measured in turkey semen diluted in Beltsville poultry semen extender and stored for 48 h (4 degrees C). The total phospholipid content of spermatozoa decreased during storage, while no quantitative decrease was observed in seminal plasma. More precisely, significant decreases in phosphatidylcholine, and to a lesser extent in sphingomyeline, phosphatidylserine, and phosphatidylinositol were observed in spermatozoa. The fatty acid profile of turkey spermatozoa partly reflected diet composition and had a high level of n-9 polyunsaturated fatty acids. Neither fatty acid profile nor free cholesterol were affected by storage. The lipid composition of seminal plasma was quite different from that observed in spermatozoa and was similar to the high density lipoprotein composition of chicken seminal plasma. In vitro storage did not significantly affect lipid classes and only small changes were observed in phospholipid classes of seminal plasma. The motility, viability, and morphological integrity of spermatozoa decreased during storage. These changes in phospholipid content may be explained by membrane phospholipid lysis followed by endogenous metabolism or by a complex combination of lysis, metabolism, and peroxidation. They are likely to affect semen quality and the success of in vitro storage severely.  相似文献   

6.
The study considered two major aims: (a) to measure the changes in quality parameters, lipid composition and antioxidant activity occurring in turkey spermatozoa during liquid storage; (b) to determine if the enrichment of sperm in n-3 fatty acids and alpha-tocopherol affect sperm survival during storage. Turkey breeders were fed a control diet or an Omega3 diet enriched with fish oil and alpha-tocopheryl-acetate. Ejaculates were pooled (5ejaculates/pool; 4pools/treatment) and stored in vitro for 48h at 4 degrees C. Viability, motility, susceptibility to induced peroxidation and alpha-tocopherol content were measured in spermatozoa; lipid and phospholipid fatty acid composition were measured in spermatozoa and seminal plasma. The proportion of motile and viable spermatozoa significantly decreased, and the proportion of dead spermatozoa significantly increased. The susceptibility of turkey spermatozoa to induced peroxidation also significantly increased during storage. The enrichment of turkey spermatozoa with n-3 long chain PUFA and vitamin E by dietary treatment did not prevent the negative effect of storage on sperm quality and sensitivity to induced in vitro peroxidation; however, it was efficient in partially prevent the increase of sperm death, therefore the proportion of dead spermatozoa was higher in control (37.4%) compared to treated spermatozoa (31.7%) after 48h liquid storage. Major changes were recorded in the lipid composition of turkey spermatozoa during liquid storage in both experimental dietary groups, whereas no significant changes were measured in seminal plasma. In spermatozoa, a great loss in the phospholipid and free cholesterol content was measured. Moreover, the loss in total sperm phospholipid was associated to a peculiar and selective decrease in the bounded fatty acids: saturates and monounsaturates were greatly reduced and polyunsaturates did not change. As a consequence, the polyunsaturated to saturated fatty acid ratio increased during 48h liquid storage. The observed changes in the lipid and phospholipid-bound fatty acid composition of turkey spermatozoa occurring during liquid storage might be related to different events and have been discussed.  相似文献   

7.
Semen of Turkeys between 31 and 52 weeks of age was analyzed to investigate the cause of reduction in Turkey fertility at the end of the reproductive period. Sperm motility and viability, lipid concentration, fatty acid composition and lipid peroxides were evaluated on fresh spermatozoa or spermatozoa stored for 48h at 4 degrees C. Fertility of fresh semen was also evaluated.Fertility obtained with fresh semen decreased at 44-47 weeks of age. Ageing was also accompanied by a decrease in sperm viability (at 47 weeks) and later by a decrease in motility of spermatozoa (at 52 weeks). Polyunsaturated fatty acids (PUFAs) were the first lipids of fresh spermatozoa affected by age, especially n-3 and n-9 PUFAs. Changes in these PUFAs were followed by a 30% increase in lipid peroxidation at 47 and 52 weeks of age and a reduction in phospholipid content at 52 weeks.In vitro storage did not cause lipid peroxidation in sperm obtained during the first half of the reproductive period but malondialdehyde (MDA) levels significantly increased in sperm obtained during the second half of this period. In vitro storage also decreased phospholipid content of spermatozoa from 41 weeks of age, and viability and motility regardless of age.In conclusion, lipid alteration mainly originating from PUFAs peroxidation could partly explain the decrease in semen quality and fertility observed with ageing. In addition, lipid peroxidation was increased during in vitro storage of spermatozoa from older Turkeys.  相似文献   

8.
The changes in viability, susceptibility to peroxidation and fatty acid composition of total phospholipid were studied in boar spermatozoa during 5 day liquid storage in a standard or alpha-tocopherol (alphaT) enriched diluent. The sperm rich fraction of the ejaculates was collected from 6-month old boars. Sperm viability progressively decreased during storage and alphaT inclusion into the diluent significantly inhibited this trend. alphaT inclusion also decreased significantly peroxidation (TBARS production of spermatozoa). Spermatozoa stored in the treatment diluent became rapidly enriched in alphaT with a concomitant decrease of alphaT content in the medium. The proportion of polyunsaturates, mainly 22:6n-3, decreased with a complementary increase in the content of the saturates, mainly 18:0. The inclusion of alphaT into the diluent was effective in totally preventing the significant decrease of 22:6n-3 observed in sperm phospholipid in the control samples during the storage period. It is concluded that the alphaT inclusion in the boar semen diluent increased cell viability through its prevention of an oxidative reduction in the levels of the major polyunsaturated fatty acids, namely 22:6n-3.  相似文献   

9.
Many reports have demonstrated that birds show a low degree of fatty acid unsaturation and lipid peroxidation compared with mammals of similar body size. The aim of the present study was to examine fatty acid profiles, non-enzymatic lipid peroxidation and vitamin E levels of mitochondria and microsomes obtained from liver, heart and brain of goose (Anser anser). The unsaturated fatty acid content found in mitochondria and microsomes of all tissues examined was approximately 60% with a prevalence of C18:1 n9 + C18:2 n6 = 50%. The 20:4 n6 + C22:6 n3 content was significantly higher in brain organelles (approx. 16%) compared with mitochondria and microsomes of liver and heart (approx. 4%). Whereas these organelles were not affected when subjected to lipid peroxidation, brain mitochondria were highly affected, as indicated by the increase in chemiluminescence and a considerable decrease of arachidonic and docosahexaenoic acids. These changes were not observed during lipid peroxidation of brain microsomes. Vitamin E content was higher in liver and heart than in brain mitochondria (1.77 +/- 0.06 and 1.93 +/- 0.13 vs. 0.91 +/- 0.09 nmol/mg protein). The main conclusion of this paper is that a lower degree of unsaturation of fatty acids in liver and heart mitochondria and a higher vitamin E level than in brain mitochondria protect those tissues against lipid peroxidation.  相似文献   

10.
The aim of the present study was to characterize the dietary effects of n-3 LC-PUFA and alpha-tocopheryl acetate (vE) on the quality, phospholipid fatty acid composition, alpha-tocopherol content (alpha-T) and in vitro susceptibility to lipid peroxidation in turkey semen. Fertility of fresh semen was also evaluated. Male turkeys were randomly divided and fed either a control diet or a fish oil and vE rich diet (FO diet) from 40 to 60 weeks of age. The FO diet increased the proportion of n-3 fatty acids in spermatozoa and as a consequence the (n-3)/(n-6) ratio also increased. These changes did not affect the proportion of n-9 PUFAs, particularly of C22:3n-9, in semen. The sperm content of alpha-T was dependent by the dietary supplementation of the vitamin and the sperm content was more than doubled supplying 120 mg kg(-1) of feed to the males compared to the 60 mg kg(-1) of feed in the control diet. In agreement with the major content of alpha-T in spermatozoa collected from the FO group were significantly less susceptible to in vitro induced oxidation. The reproductive capacity of the male breeders was not affected by the diet; however the result is considered of some relevance for field conditions where even very small changes have economic interest being applied to large bird population.  相似文献   

11.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

12.
Reported was an investigation of the effect of vitamin E (Vit.E) and corn oil on semen traits of male Japanese quail (Coturnix coturnix japonica). From 8 to 20 wk of age, birds were raised on corn-based diets supplemented with corn oil (0 and 3%) and Vit.E (National Research Council (NRC) recommended 25mg/kg/day/dry matter and 150 mg/kg/day/dry matter) in a 2×2 factorial manner. The diet was supplemented with corn oil and Vit.E (E2C2) which provided additional n-6 polyunsaturated fatty acids in the form of 20:4n-6 and 22:4n-6 in spermatozoa phospholipid. The left testes weights were increased (P<0.01) in groups that received Vit.E in the diet (3.95 and 4.12 g, respectively) (P=0.03) and combined testes weight was the greatest in E2C2 group (7.57g) (P=0.02). Semen volume increased throughout the experiment in the E2C2 group. E2C1 and E2C2 birds had the greatest (90.05% and 92.1%, respectively) live sperm percent by comparison with other groups. The susceptibility of semen to lipid peroxidation in vitro was increased in quail fed E1C1 and E1C2, but was reduced when 150 mg Vit.E kg/day/dry matter feed was provided in the diet. The amount of Vit.E in the seminal plasma of E1C1 and E1C2 groups was (P<0.01) less than that in the other two groups (E2C1 and E2C2). From this study, it may be concluded that increasing diet n-6/n-3 ratio can be beneficial for semen traits, however, this application increased sperm peroxidation sensitivity but it can be controlled by inclusion of antioxidant such as Vit.E (150 mg/kg/day/dry matter) to diet.  相似文献   

13.
The hepatic fatty acid metabolism was investigated in rats stressed by selenium deficiency and enhanced fish oil intake. Changes in the composition of lipids, peroxides, and fatty acids were studied in the liver of rats fed either a Sedeficient (8 microg Se/kg) or a Se-adequate (300 microg Se/kg) diet, both rich in n-3 fatty acid-containing fish oil (100 g/kg diet) and vitamin E (146 mg alpha-tocopherol/kg diet). The two diets were identical except for their Se content. Se deficiency led to a decrease in hair coat density and quality as well as to changes in liver lipids, individual lipid fractions and phospholipid fatty acid composition of the liver. The low Se status did reduce total and reduced glutathione in the liver but did not affect the hepatic malondialdehyde level. In liver phospholipids (PL), Se deficiency significantly reduced levels of palmitic acid [16:0], fatty acids of the n-3 series such as DHA [22:6 n-3], and other long-chain polyunsaturates C-20-C-22, but increased n-6 fatty acids such as linoleic acid (LA) [18:2 n-6]. Thus, the conversion of LA to arachidonic acid was reduced and the ratio of n-6/n-3 fatty acids was increased. As in liver PL, an increase in the n-6/n-3 ratio was also observed in the mucosal total fatty acids of the small intestine. These results suggest that in rats with adequate vitamin E and enhanced fish oil intake, Se deficiency affects the lipid concentration and fatty acid composition in the liver. The changes may be related to the decreased levels of selenoenzymes with antioxidative functions. Possible effects of Se on absorption, storage and desaturation of fatty acids were also discussed.  相似文献   

14.
We compared the lipid content and fatty acid composition of (1) the egg yolk of three anuran species (Chirixalus eiffingeri, Rhacophorus moltrechti and Buergeria robustus) and chicken eggs; and (2) C. eiffingeri tadpoles fed conspecific eggs or chicken egg yolk. Anuran and chicken egg yolk contained more non-polar than polar lipids but the proportions varied among species. Chicken egg yolk contained low amounts of 22:5n-3 in the polar lipid fraction, and B. robustus eggs did not contain any n-3 or n-6 non-polar lipids. The specific variation of lipid contents and fatty acid composition may relate to the maternal diet and/or breeding biology. In C. eiffingeri tadpoles that fed chicken yolk or frog egg yolk, the dominant components of polar and non-polar lipids were 16:0, 18:0, 18:1, and 18:2n-6, or 20:4n-6 fatty acids. C. eiffingeri eggs contained more n-3 fatty acids (e.g. 18:3n-3 and 20:5n-3) than chicken egg yolk, and tadpoles fed conspecific eggs contained more of these fatty acids than tadpoles fed chicken egg yolk. The compositional differences in the fatty acids between C. eiffingeri tadpoles that fed frog egg or chicken egg yolk are the reflection of the variation in the dietary sources. Our results suggest a direct incorporation of fatty acids into the body without or minimal modification, which provide an important insight into the physiological aspects of cannibalism.  相似文献   

15.
Although substantial information is available regarding the fatty acid composition of lipids of the yolk and of the developing tissues of the chicken embryo, there is little knowledge on this topic for other avian species. The aim of the present study was to compare the yolk and embryonic tissue fatty acid profiles for a species selecting its food in the wild (the lesser black backed gull) with one fed on a standard commercial diet (the commercially reared pheasant). The fatty acid compositions of the yolk lipids were determined, and major differences were observed between the two species. In particular, the phospholipid of the gull yolk was enriched in 20:4n-6 and 22:6n-3 (18.8 and 7.1%, respectively, by weight of total fatty acids) in comparison with the pheasant (4.0 and 4.1%, respectively). The fatty acid compositions of the embryonic tissues were determined using eggs incubated in the laboratory. For the liver and heart, the fatty acid composition of the lipids in the two species reflected the initial yolk composition, with the gull tissue lipids generally containing higher proportions of 20:4n-6 and 22:6n-3 than those of the pheasant. In contrast, the fatty acid profiles of the brain phospholipid were essentially identical in the two species, with 20:4n-6 and 22:6n-3 comprising approximately 9 and 17%, respectively, of total fatty acids in both cases.  相似文献   

16.
We studied: (1) concentrations and fatty acid compositions of plasma non-esterified fatty acids, neutral lipids, and phospholipids, and (2) fatty acid composition of flight muscle phospholipids in wintering, premigratory, and spring and fall migrating western sandpipers ( Calidris mauri). Plasma neutral lipid and phospholipid levels were elevated in migrants, reflecting high rates of fat deposition. An important role of phospholipids in fattening is suggested by the fact that the amount of fatty acids in plasma phospholipids was similar to, or in spring as much as twice, that of neutral lipids. Changes in the ratio of plasma neutral lipids to phospholipids may indicate seasonal changes in triacylglycerol stores of invertebrate prey. Monounsaturation and total unsaturation of plasma neutral lipids and phospholipids increased during migration. Muscle phospholipids were more monounsaturated in spring and fall, but total unsaturation was reduced in fall. Arachidonic acid [20:4(n-6)] was especially abundant in muscle phospholipids in winter (29%) and declined during migration (19-22%), contributing to a decline in the ratio of n-6 to n-3 fatty acids. The abundance of plasma phospholipids and variability of neutral lipid to phospholipid ratio indicates that measurement of plasma phospholipids will improve methods for assessment of fattening rates of birds. The functional significance of changes in muscle phospholipids is unclear, but may relate to depletion of essential n-6 fatty acids during exercise.  相似文献   

17.
Previous reports have shown that vitamin B(6)deficiency leads to peroxidative stress in rat organs. In this paper, we evaluated the effects on lipid peroxidation of short-term (six weeks) dietary administration of marginal contents of vitamin B(6). A further risk factor of susceptibility to peroxidation was the presence of fish oil with higher contents of n-3 polyunsaturated fatty acid (LCPUFA). The contemporaneous vitamin B(6)deficiency and presence of fish oil caused a C18:2 increase, a C20:4 decrease, and replacement of some n-6 LCPUFA with n-3 LCPUFA, without changes in the unsaturation index. In liver, TBARS production did not show any differences between dietary conditions, whereas the activities of glutathione-dependent enzymes were stimulated. In heart, fish oil increased lipid peroxidation, especially in the vitamin B(6)-deficient group.  相似文献   

18.
The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.  相似文献   

19.
Because alpha-synuclein may function as a fatty acid binding protein, we measured fatty acid incorporation into astrocytes isolated from wild-type and alpha-synuclein gene-ablated mice. alpha-Synuclein deficiency decreased palmitic acid (16:0) incorporation 31% and arachidonic acid [20:4 (n-6)] incorporation 39%, whereas 22:6 (n-3) incorporation was unaffected. In neutral lipids, fatty acid targeting of 20:4 (n-6) and 22:6 (n-3) (docosahexaenoic acid) to the neutral lipid fraction was increased 1.7-fold and 1.6-fold, respectively, with an increase in each of the major neutral lipids. This was consistent with a 3.4- to 3.8-fold increase in cholesteryl ester and triacylglycerol mass. In the phospholipid fraction, alpha-synuclein deficiency decreased 16:0 esterification 39% and 20:4 (n-6) esterification 43% and decreased the distribution of these fatty acids, including 22:6 (n-3), into this lipid pool. alpha-Synuclein gene-ablation significantly decreased the trafficking of these fatty acids to phosphatidylinositol. This observation is consistent with changes in phospholipid fatty acid composition in the alpha-synuclein-deficient astrocytes, including decreased 22:6 (n-3) content in the four major phospholipid classes. In summary, these studies demonstrate that alpha-synuclein deficiency significantly disrupted astrocyte fatty acid uptake and trafficking, with a marked increase in fatty acid trafficking to cholesteryl esters and triacylglycerols and decreased trafficking to phospholipids, including phosphatidylinositol.  相似文献   

20.
A method utilizing electrospray ionization coupled with tandem mass spectrometry was developed as a facile and rapid method to identify and quantify lipid remodeling in vivo. Electrospray/tandem mass spectrometric analyses were performed on lipids isolated from liver tissue and resident peritoneal cells from essential fatty acid sufficient and deficient mice. Essential fatty acid deficiency was chosen as the paradigm to evaluate the methodology because it epitomizes the most extreme dietary means of altering fatty acid composition of virtually all cellular lipid species. Qualitative and quantitative changes were measured in the phospholipid and cholesterol ester species directly in the chloroform/methanol lipid extract without any prior chromatographic separation. Lipid remodeling in liver and peritoneal cells from essential fatty acid deficient mice was qualitatively similar in cholesterol ester, phosphatidylcholine, and phosphatidylethanolamine. The monoenoic fatty acids palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9) were increased markedly, whereas all n-6 and n-3 polyunsaturated fatty acids were nearly depleted in phospholipid and cholesterol ester species. The n-9 polyunsaturated fatty acid surrogate, Mead acid (20:3 n-9), substituted for arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) in phospholipid, but not in cholesterol ester, species. Another notable difference was that adrenic acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), both metabolites of arachidonic acid, accumulated in phospholipid and cholesterol ester species of peritoneal cells, but not in liver cells, of essential fatty acid sufficient mice. The overall body of data presented illustrates the implementation of electrospray/tandem mass spectrometry as a method for facile and direct quantification of changes in lipid species during lipid metabolic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号