首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ta-Yan Leong  Jan M. Anderson 《BBA》1983,723(3):391-399
The hypothesis that chloroplasts having different light-saturated rates of photosynthesis will have different proportions of the intrinsic thylakoid complexes engaged in light-harvesting and electron transport (Anderson, J.M. (1982) Mol. Cell. Biochem. 46, 161–172) has been tested. Peas were grown in light regimes which varied in light intensity, quality and time of irradiance, and ranged from sunlight through red to blue-enriched light of very low radiation. The electron-transport capacity at saturating light of Photosystem I and Photosystem II of chloroplasts isolated from light-adapted peas was 2-fold and 5–6-fold lower, respectively, in the lowest radiation compared to sunlight. There was a marked increase in the amount of total chlorophyll associated with the main chlorophyll ab-proteins (LHCP1, LHCP2 and LHCP3) and a 2-fold decrease in the core reaction centre complex of Photosystem II (CP a) as the radiation decreased; the LHCP1–3CP a ratio changed from 3.5 to 9.0. The amount of chlorophyll associated with Photosystem I varied from 34% in sunlight to 27% in the lowest radiation, but the antenna size of Photosystem I was not markedly different; there was a 2-fold decrease in the amount of cytochrome f on a chlorophyll basis, which partly accounted for the decreased electron-transport capacity of Photosystem I. Since the increases or decreases in the levels of each of the components correlated with decreasing radiation, it is clear that the light-adaptation of both light-harvesting and electron-transport components is indeed closely co-ordinated.  相似文献   

2.
Pea plants ( Pisum sativum L. ev. Greenfeast) were grown for 2 to 3 weeks in while (˜ 50 μmol photons m−2 s−1; 400–700 nm) or green (˜ 30 μmol photons m−2 s −1 400–700 nm) light (16 h day/8 h night), with or without far-red light. Supplementary far-red light decreased leaf area and increased internodal length in both white and green light, demonstrating that phytochrome influenced leaf size and plant growth. However, there was no effect of far-red light on chlorophyll a /chlorophyll b ratios, chlorophyll-protein composition, the stoichiometry of electron transport complexes or photosynthetic function of isolated thylakoids. These results suggest that phytochrome is ineffective in modulating the composition and function of thylakoids in pea plants grown at low irradiance. One possible explanation of the ineffectiveness of phytochrome on thylakoids is discussed in terms of the drastic attenuation of red relative to far-red light in green tissue.  相似文献   

3.
In C4 plants, such as maize, the photosynthetic apparatus is partitioned over two cell types called mesophyll (M) and bundle sheath (BS), which have different structure and specialization of the photosynthetic thylakoid membranes. We characterized protein phosphorylation in thylakoids of the two cell types from maize grown under either low or high light. Western blotting with phosphothreonine antibodies and ProQ phosphostaining detected light-dependent changes in the protein phosphorylation patterns. LC-MS/MS with alternating CID and electron transfer dissociation sequencing of peptide ions mapped 15 protein phosphorylation sites. Phosphorylated D2, CP29, CP26, Lhcb2 proteins, and ATPsynthase were found only in M membranes. A previously unknown phosphorylation site was mapped in phosphoenolpyruvate carboxykinase from the BS cells. Phosphorylation stoichiometry was calculated from the ratios of normalized ion currents for phosphorylated to nonphosphorylated peptide pairs from the D1, D2, CP43, and PbsH proteins of photosystem II (PSII). Every PSII in M thylakoids contained on average 1.5 ± 0.1 or 2.3 ± 0.2 phosphoryl groups in plants grown under either low or high light, while in BS membranes the corresponding numbers were 0.25 ± 0.1 or 0.7 ± 0.2, respectively. It is suggested that the phosphorylation level, as well as turnover of PSII depend on the structure of thylakoids.  相似文献   

4.
5.
Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and ribulose-1,5-bisphospate (RuBP) carboxylase (EC 4.1.1.39) activities in leaves of different maize hybrids grown under field conditions (high light intensity) and in a growth chamber (low light intensity) were determined. Light intensity and leaf age affected PEP carboxylase activity, whereas RuBP carboxylase was affected by leaf age only at low light intensity. PEP carboxylase/RuBP carboxylase activity ratio decreased according to light intensity and leaf age. Results demonstrate that Zea mays grown under field conditions is a typical C4 species in all leaves independently from their position on the stem, whereas it may be a C3 plant when it is grown in a growth chamber at low light intensityAbbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

6.
HvLhcb1 a major light-harvesting chlorophyll a/b-binding protein in barley, is a critical player in sustainable growth under Fe deficiency. Here, we demonstrate that Fe deficiency induces phosphorylation of HvLhcb1 proteins leading to their migration from grana stacks to stroma thylakoid membranes. HvLhcb1 remained phosphorylated even in the dark and apparently independently of state transition, which represents a mechanism for short-term acclimation. Our data suggest that the constitutive phosphorylation-triggered translocation of HvLhcb1 under Fe deficiency contributes to optimization of the excitation balance between photosystem II and photosystem I, the latter of which is a main target of Fe deficiency.  相似文献   

7.
8.
To better understand what directs and limits the evolution of phenotype, constraints in the realization of the optimal phenotype need to be addressed. That includes estimations of variability of adaptively important traits as well as their correlation structures, but also evaluation of how they are affected by relevant environmental conditions and development phases. The aims of this study were to analyze phenotypic plasticity, genetic variability and correlation structures of important Iris pumila leaf traits in different light environments and ontogenetic phases, and estimate its evolutionary potential. Stomatal density, specific leaf area, total chlorophyll concentration and chlorophyll a/b ratio were analyzed on I. pumila full‐sib families in the seedling phase and on the same plants after 3 years of growth in contrasting light conditions typical for ontogenetic stage in question. There was a significant phenotypic plasticity in both ontogenetic stages, but significant genetic variability was detected only for chlorophyll concentrations. Correlations of the same trait between different stages were weak due to changes in environmental conditions and difference in ontogenetic reaction norms of different genotypes. Ontogenetic variability of correlation structures was detected, where correlations and integration were higher in seedlings compared with adult plants 3 years later. Correlations were affected by environmental conditions, with integration being higher in the lower light conditions, but correlations between phases being stronger in the higher light treatment. These findings demonstrated that the analyzed traits can be selected and can mostly evolve independently in different environments and ontogenetic stages, with low genetic variability as a potentially main constraint.  相似文献   

9.
Stomatal response to changes in temperature and humidity was studied in wheat (Triticum aestivum L.) cv. Iren’ cultivated under conditions of high water supply and cv. Kazakhstanskaya 10, which is relatively drought tolerant. Experiments were performed under both laboratory and field conditions. It was demonstrated that stomata of cv. Kazakhstanskaya 10 plants closed rapidly with reducing humidity (the response of the first type), whereas, in cv. Iren’, this response was less expressed and, under conditions of a high water content in soil, stomatal conductance could increase in response to reduced humidity (the response of the second type). At an increased stomatal conductance and transpiration, water content in cv. Iren’ plants was maintained due to the increase in hydraulic conductance and water inflow from the roots. A possible role of the first-type response (rapid stomata closure) for growth maintenance under drought and of the second-type response (a parallel increase in the stomatal and hydraulic conductance) for providing of rapid growth and high productivity under sufficient water supply is discussed. A possibility to use the type of stomata behavior for cultivar assessment is considered.  相似文献   

10.
Plants have tremendous capacity to adjust their morphology, physiology and metabolism in response to changes in growing conditions. Thus, analysis solely of plants grown under constant conditions may give partial or misleading indications of their responses to the fluctuating natural conditions in which they evolved. To obtain data on growth condition‐dependent differences in metabolite levels, we compared leaf metabolite profiles of Arabidopsis thaliana growing under three constant laboratory light conditions: 30 [low light (LL)], 300 [normal light (NL)] and 600 [high light (HL)]µmol photons m?2 s?1. We also shifted plants to the field and followed their metabolite composition for 3 d. Numerous compounds showed light intensity‐dependent accumulation, including: many sugars and sugar derivatives (fructose, sucrose, glucose, galactose and raffinose); tricarboxylic acid (TCA) cycle intermediates; and amino acids (ca. 30% of which were more abundant under HL and 60% under LL). However, the patterns differed after shifting NL plants to field conditions. Levels of most identified metabolites (mainly amino acids, sugars and TCA cycle intermediates) rose after 2 h and peaked after 73 h, indicative of a ‘biphasic response’ and ‘circadian’ effects. The results provide new insight into metabolomic level mechanisms of plant acclimation, and highlight the role of known protectants under natural conditions.  相似文献   

11.
The content and composition of pigments were examined in the third leaf of Zea mays L. plants grown under controlled environment at near-optimal temperature (24°C) or sub-optimal temperature (14°C) at a light intensity of either 200 or 600 μmol m?2 s?1. Compared to leaves grown at 24°C, leaves grown at 14°C showed a large reduction in the chlorophyll (Chl) content, a marked decrease in the Chl a/b ratio, and a large increase in the ratio of total carotenoids/Chl a+b. Leaves grown at 14°C showed a much lower content of β-carotene than leaves grown at 24°C, while the content of the carotenoids of the xanthophyll cycle (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was markedly higher in the former leaves as compared to the latter leaves; neoxanthin and lutein were affected by the growth temperature to a much lesser extent. The xanthophylls/β-carotene ratio was about three times higher in leaves grown at 14°C as compared to leaves grown at 24°C. On a chlorophyll basis, the two types of leaves hardly differed in their level of β-carotene, while the levels of the xanthophylls (including lutein and neoxanthin) were higher in 14°C-grown leaves as compared to 24°C-grown leaves. In leaves grown at 14°C, 40 and 56% of the V+A+Z pool was in the form of zeaxanthin at low light intensity and high light intensity, respectively. Only trace amounts of zeaxanthin, if any, were present in leaves grown at 24°C. The changes in the pigment composition induced by growth at sub-optimal temperature were more pronounced at a light intensity of 600 as compared to 200 μmol m?2 s?1. In the given range, the light intensity slightly affected the composition of pigments in leaves grown at 24°C. The physiological significance of the modifications to the pigment composition induced by growth at sub-optimal temperature is discussed.  相似文献   

12.
不同水分条件下胡杨光响应曲线拟合模型比较   总被引:1,自引:0,他引:1       下载免费PDF全文
本研究通过测量不同水分条件下胡杨(Populus euphratica Oliv.)叶片的光响应曲线,并采用4种光响应模型对其光合特征参数拟合值与实测值进行比较,分析了不同水分条件下光响应曲线模型对胡杨适用性的影响机制。结果表明,当水分供应充足时,胡杨非直角双曲线模型对暗呼吸速率(Rd)的拟合效果最优,直角双曲线修正模型拟合光饱和点(LSP)、最大净光合速率(Pnmax)、光补偿点(LCP)的结果与实测值较接近;但当胡杨受到水分亏缺后,直角双曲线修正模型对Pnmax和光饱和点(LSP)的拟合效果最优,直角双曲线模型对Rd和LCP的拟合效果最佳。因此,水分条件有利时胡杨应用直角双曲线修正模型、非直角双曲线模型较好;水分亏缺条件下采用直角双曲线修正模型、直角双曲线模型更为适合。  相似文献   

13.
Land application of biosolids to improve agricultural productivity is a cost-effective approach for resource recovery. Unfortunately, municipal biosolids often contain high concentrations of heavy metals, including zinc and copper. In this study, a co-cropping technique was investigated using a known zinc hyperaccumulator, Sedum alfredii with a grain crop, Zea mays. After a 3-mo growth trial, the results indicate that when Z. mays is co-cropped with S. alfredii, heavy metals accumulated in the grains were significantly reduced when compared to monoculture cropping. Co-cropping improved the growth of both plant species. In addition, the biosolids maintained stable pH, N-P-K concentrations, germination potential, and water content after the plant treatment, regardless of the plant species used in the trial. In conclusion, co-cropping with hyperaccumulators may be an effective approach to reducing the risk of contaminant uptake in edible crops.  相似文献   

14.
The efficiency of C4 photosynthesis in Zea mays, Miscanthus x giganteus and Flaveria bidentis in response to light was determined using measurements of gas exchange, 13CO2 photosynthetic discrimination, metabolite pools and spectroscopic assays, with models of C4 photosynthesis and leaf 13CO2 discrimination. Spectroscopic and metabolite assays suggested constant energy partitioning between the C4 and C3 cycles across photosynthetically active radiation (PAR). Leakiness (φ), modelled using C4 light‐limited photosynthesis equations (φmod), matched values from the isotope method without simplifications (φis) and increased slightly from high to low PAR in all species. However, simplifications of bundle‐sheath [CO2] and respiratory fractionation lead to large overestimations of φ at low PAR with the isotope method. These species used different strategies to maintain similar φ. For example, Z. mays had large rates of the C4 cycle and low bundle‐sheath cells CO2 conductance (gbs). While F. bidentis had larger gbs but lower respiration rates and M. giganteus had less C4 cycle capacity but low gbs, which resulted in similar φ. This demonstrates that low gbs is important for efficient C4 photosynthesis but it is not the only factor determining φ. Additionally, these C4 species are able to optimize photosynthesis and minimize φ over a range of PARs, including low light.  相似文献   

15.
Immunolocalization using polyclonal antibodies raised against a conserved dehydrin amino acid sequence was used to establish the temporal and spatial patterns of dehydrin accumulation in embryo tissue of Zea mays L. (var. Ohio 43) kernels imbibed in the presence of abscisic acid. The temporal pattern of accumulation indicated an increase in dehydrins over time (particularly between 15 and 30 h) and with maximum levels detected 48 h after the onset of imbibition. Dehydrins were first evident, and also the most concentrated, in the cytosol throughout the accumulation period suggesting that the primary function of dehydrins involves the cytosol and the structures contained therein. Only after an accumulation of dehydrins in the cytosol was there an increase in the abundance of nuclear dehydrins. In addition, dehydrins were also observed in association with the proteinaceous matrix of protein bodies and membranes of protein and lipid bodies; these findings have not been reported previously. The observed localization at a number of sites indicates that the specific biochemical roles of dehydrins are likely to be diverse.  相似文献   

16.
The effects of fluridone on guard cell morphology, chloroplast ultrastructure and accumulation of drought stress-induced abscisic acid (ABA) were studied in Vicia faba L. plants grown under different light conditions. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. The appearance of defective and undeveloped stomata, and chloroplasts with a destroyed thylakoid membrane system was found in fluridone-treated plants grown at a photosynthetic photon flux (PPF) of 600 μmol m-2 s-1. Plants grown at a PPF of 40 μmol m-2 s-1 had diminished levels of ABA after imposition of dehydration. Fluridone treatment reduced the level of ABA in both unstressed and dehydrated leaves. Accumulation of ABA in the control plants was considerably reduced when they were exposed to dark periods of 24, 48 and 72 h just before imposition of the stress. Twenty-four hours after the dark treatment dehydration of the leaves resulted in a 3-fold decrease in the level of stress-induced ABA, and 72 h after dark treatment the amount of stress-induced ABA approximated the prestressed values. Fluridone-treated plants failed to accumulate ABA under water stress. In addition to functionally active chloroplasts, well-developed and functional stomata are required for drought stress to elicit a rise in ABA.  相似文献   

17.
The effect of low growth temperature on morpho-physiological traits of maize was investigated by the means of a QTL analysis in a segregating F(2:3) population grown under field conditions in Switzerland. Chlorophyll fluorescence parameters, leaf greenness, leaf area, shoot dry weight, and shoot nitrogen content were investigated at the seedling stage for two years. Maize was sown on two dates in each year; thus, plants sown early were exposed to low temperature, whereas those sown later developed under more favourable conditions. The main QTLs involved in the functioning of the photosynthetic apparatus at low temperature were stable across the cold environments and were also identified under controlled conditions with suboptimal temperature in a previous study. Based on the QTL analysis, relationships between chlorophyll fluorescence parameters and leaf greenness were moderate. This indicates that the extent and functioning of the photosynthetic machinery may be under different genetic control. The functioning of the photosynthetic apparatus in plants developed at low temperature in the field did not noticeably affect biomass accumulation; since there were no co-locations between QTLs for leaf area and shoot dry weight, biomass accumulation did not seem to be carbon-limited at the seedling stage under cool conditions in the field.  相似文献   

18.
High concentrations of Fe in the roots of plants grown in calcareous soil have been found in a variety of plants, which, nevertheless, show Fe deficiency symptoms. In the present work, energy dispersive X-ray (EDX) analysis at the cellular level has been used to characterize high root Fe concentrations in maize ( Zea mays L.) grown in a calcareous soil in comparison with low root Fe concentrations under acidic soil conditions. Roots were thoroughly washed to remove adhering soil particles from the root surface as far as possible. To avoid any interference with possibly still present soil particles, the excitation beam was focused on radial walls of neighboring cells as well as on the symplast. Under alkaline conditions, high Fe concentrations in the m M range and higher accumulated in the epidermal root apoplast. Symplastic Fe was not detectable. Only traces of Fe were detectable in the apoplast of the cortex parenchyma. Under acidic conditions, apoplastic root Fe concentrations were clearly lower than under alkaline conditions, and no Fe was detectable in the root apoplast by use of EDX analysis. We conclude that, under alkaline conditions, high amounts of Fe are trapped in the epidermal root apoplast (apoplastic Fe inactivation), probably because of a high apoplastic pH and thus restricted translocation towards the root stele and to the upper plant parts. In contrast, on acidic soils Fe translocation towards the root stele and thus Fe supply to the upper plant parts was not impaired. Our findings imply that Fe deficiency on calcareous soils is not caused by restricted acquisition of Fe from the soil.  相似文献   

19.
The performance of the photosynthetic apparatus was examined in the third leaves of Zea mays L. seedlings grown at near-optimal (25 °C) or at suboptimal (15 °C) temperature by measuring chlorophyll (ChI) a fluorescence parameters and oxygen evolution in different temperature and light conditions. In leaf tissue grown at 25 and 15 °C, the quantum yield of PSII electron transport (ψPSII) and the rate of O2 evolution decreased with decreasing temperature (from 25 to 4 °C) at a photon flux density of 125 μmol m?2 s?1. In leaves grown at 25 °C, the decrease of ψPSII correlated with a decrease of photochemical ChI fluorescence quenching (qp), whereas in leaves crown at 15 °C qp was largely insensitive to the temperature decrease. Compared with leaves grown at 25 °C, leaves grown at 15 °C were also able to maintain a higher fraction of oxidized to reduced QA (greater qp) at high photon flux densities (up to 2000 μmol m?2 s?1), particularly when the measurements were performed at high temperature (25 °C). With decreasing temperature and/or increasing light intensity, leaves grown at 15 °C exhibited a substantial quenching of the dark level of fluorescence F0 (q0) whereas this type of quenching was virtually absent in leaves grown at 25 °C. Furthermore, leaves grown at 15 °C were able to recover faster from photo inhibition of photosynthesis after a photoinhibitory treatment (1200 μmol m?2 s?1 at 25, 15 or 6 °C for 8 h) than leaves grown at 25 °C. The results suggest that, in spite of having a low photosynthetic capacity, Z. mays leaves grown at sub optimal temperature possess efficient mechanisms of energy dissipation which enable them to cope better with photoinhibition than leaves grown at near-optimal temperature. It is suggested that the resistance of Z. mays leaves grown at 15 °C to photoinhibition is related to the higher content of carotenoids of the xanthophyll cycle (violaxanthin + antheraxanthin + zeaxanthin) measured in these leaves than in leaves grown at 25 °C.  相似文献   

20.
The responses of plants to abiotic stress involve the up-regulation of numerous metabolic pathways, including several major routes that engage thiamine diphosphate (TDP)-dependent enzymes. This suggests that the metabolism of thiamine (vitamin B1) and its phosphate esters in plants may be modulated under various stress conditions. In the present study, Zea mays seedlings were used as a model system to analyse for any relation between the plant response to abiotic stress and the properties of thiamine biosynthesis and activation. Conditions of drought, high salt, and oxidative stress were induced by polyethylene glycol, sodium chloride, and hydrogen peroxide, respectively. The expected increases in the abscisic acid levels and in the activities of antioxidant enzymes including catalase, ascorbate peroxidase, and glutathione reductase were found under each stress condition. The total thiamine compound content in the maize seedling leaves increased under each stress condition applied, with the strongest effects on these levels observed under the oxidative stress treatment. This increase was also found to be associated with changes in the relative distribution of free thiamine, thiamine monophosphate (TMP), and TDP. Surprisingly, the activity of the thiamine synthesizing enzyme, TMP synthase, responded poorly to abiotic stress, in contrast to the significant enhancement found for the activities of the TDP synthesizing enzyme, thiamine pyrophosphokinase, and a number of the TDP/TMP phosphatases. Finally, a moderate increase in the activity of transketolase, one of the major TDP-dependent enzymes, was detectable under conditions of salt and oxidative stress. These findings suggest a role of thiamine metabolism in the plant response to environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号