首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have shown that the lifespan can be extended by caloric restriction or by altering the growth hormone (GH)-insulin-like growth factor 1 signaling pathway. Both of these manipulations produce physiological alterations, such as increased insulin sensitivity, and reduced glucose levels and body size. However, it is difficult to evaluate whether these are merely correlates of delayed aging or whether they have a direct causal effect on lifespan. One parameter that has been demonstrated to have causal, positive effects on longevity in invertebrates is improved antioxidant defenses. We measured activities of antioxidant enzymes Cu/Zn superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and quantified free-radical damage by lipid peroxidation (LP) and protein oxidation (PO) measurements in liver and kidney tissues, and evaluated the response to paraquat-induced oxygen toxicity in the long-living GH receptor/binding protein gene knockout (GHR-KO) mouse. We found that in the kidney, SOD was lower and GPx was higher in GHR-KO mice, and LP was higher in female GHR-KO mice only. In the liver, female GHR-KO mice had lower GPx, while male GHR-KO mice had lower CAT and higher LP. GHR-KO males were also more susceptible to paraquat toxicity compared to females or normal males. We conclude that in long-living GHR-KO mice, GH-resistance does not confer longevity by improved free-radical scavenging in the liver and kidney, suggesting that greater free-radical defenses in other tissues, or altered glucose metabolism may have a more central role in extending the lifespan of these animals.  相似文献   

2.
The thermal and metabolic physiology of Chalinolobus gouldii, an Australian vespertilionid bat, was studied in the laboratory using flow-through respirometry. Chalinolobus gouldii exhibits a clear pattern of euthermic thermoregulation, typical of endotherms with respect to body temperature and rate of oxygen consumption. The basal metabolic rate of euthermic Chalinolobus gouldii is approximately 86% of that predicted for a 17.5-g mammal and falls into the range of mass-specific basal metabolic rates ascribed to vespertilionid bats. However, like most vespertilionid bats, Chalinolobus gouldii displays extreme thermolability. It is able to enter into torpor and spontaneously arouse at ambient temperatures as low as 5 °C. Torpid bats thermoconform at moderate ambient temperature, with body temperature ≈ ambient temperature, and have a low rate of oxygen consumption determined primarily by Q 10 effects. At low ambient temperature (< 10 °C), torpid C. gouldii begin to regulate their body temperature by increased metabolic heat production; they tend to maintain a higher body temperature at low ambient temperature than do many northern hemisphere hibernating bats. Use of torpor leads to significant energy savings. The evaporative water loss of euthermic bats is relatively high, which seems unusual for a bat whose range includes extremely arid areas of Australia, and is reduced during torpor. The thermal conductance of euthermic C. gouldii is less than that predicted for a mammal of its size. The thermal conductance is considerably lower for torpid bats at intermediate body temperature and ambient temperature, but increases to euthermic values for torpid bats when thermoregulating at low ambient temperature. Accepted: 22 August 1996  相似文献   

3.
4.
Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation) of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH) were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione) to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats against oxidative insults during hibernation.  相似文献   

5.
The primary function of pulmonary surfactant is to reduce the surface tension (ST) created at the air-liquid interface in the lung. Surfactant is a complex mixture of lipids and proteins and its function is influenced by physiological parameters such as metabolic rate, body temperature and breathing. In the microchiropteran bat Chalinolobus gouldii these parameters fluctuate throughout a 24 h period. Here we examine the surface activity of surfactant from warm-active and torpid bats at both 24 degrees C and 37 degrees C to establish whether alterations in surfactant composition correlate with changes in surface activity. Bats were housed in a specially constructed bat room at Adelaide University, at 24 degrees C and on a 8:16 h light:dark cycle. Surfactant was collected from bats sampled during torpor (2535 degrees C). Alterations in the lipid composition of surfactant occur with changes in the activity cycle. Most notable is an increase in surfactant cholesterol (Chol) with decreases in body temperature [Codd et al., Physiol. Biochem. Zool. 73 (2000) 605-612]. Surfactant from active bats was more surface active at higher temperatures, indicated by lower ST(min) and less film area compression required to reach ST(min) at 37 degrees C than at 24 degrees C. Conversely, surfactant from torpid bats was more active at lower temperatures, indicated by lower ST(min) and less area compression required to reach ST(min) at 24 degrees C than at 37 degrees C. Alterations in the Chol content of bat surfactant appear to be crucial to allow it to achieve low STs during torpor.  相似文献   

6.
7.
Amphibians may be critically challenged by aquatic contaminants during their embryonic development. Many classes of compounds, including organophosphorus pesticides, are able to cause oxidative stress that affects the delicate cellular redox balance regulating tissue modeling. We determined the progression of antioxidant defenses during the embryonic development of the South American common toad, Bufo arenarum. Superoxide dismutase (SOD) and catalase (CAT) activities were high in the unfertilized eggs, and remained constant during the first stages of development. SOD showed a significant increase when the gills were completely active and opercular folds began to form. Reductase (GR) activity was low in the oocytes and increased significantly when gills and mouth were entirely developed and the embryos presented a higher exposure to pro-oxidant conditions suggesting an environmental control. Reduced glutathione (GSH) content was also initially low, and rose continuously pointing out an increasing participation of GSH-related enzymes in the control of oxidative stress. GSH peroxidases and GSH-S-transferases showed relatively high and constant activities, probably related to lipid peroxide control. B. arenarum embryos have plenty of yolk platelets containing lipids, which provide the energy and are actively transferred to the newly synthesized membranes during the early embryonic development. Exposure to the pro-oxidant pesticide malathion during 48 h did not significantly affect the activity of antioxidant enzymes in early embryos, but decreased the activities of CAT, GR, and the pool of GSH in larvae. Previous work indicated that lipid peroxide levels were kept low in malathion-exposed larvae, thus we conclude that oxidative stress is overcome by the antioxidant defenses. The increase in the antioxidant metabolism observed in the posthatching phase of development of B. arenarum embryo, thus constitutes a defense against natural and human-generated pro-oxidants present in the aquatic environment.  相似文献   

8.
Daily torpor can provide significant energy and water savings in bats during cold ambient temperatures and food scarcity. However, it may reduce rates of foetal and juvenile development. Therefore, reproductive females should optimize development by minimizing times in torpor. To test this hypothesis, the use of torpor by female and male free-ranging Daubenton’s bats (Myotis daubentonii) during reproduction (gestation, lactation, and post-lactation period) was investigated in 1998 and 1999. Temperature-sensitive radio transmitters were attached to the bats to measure skin temperature. Simultaneously, ambient temperature was recorded. While both sexes became torpid during daytime, male bats used daily torpor (>6°C below individual active temperature) significantly more often during reproductive period (mean: 78.4 % of day time in May and 43 % in June) than females. Female bats went into daily torpor, particularly in late summer when juveniles were weaned (mean: 66.6 % of daytime). Lowest skin temperatures occurred in a female bat with 21.0°C during post-lactation. Skin temperatures of male bats fluctuated from 16.8°C in torpor to 37.2°C during times of activity. There was a significant effect of reproductive period on skin temperature in females whereas mean ambient temperature had no significant effect. However, mean ambient temperature affected mean skin temperatures in males. Our findings indicate that female Daubenton’s bats adopt their thermoregulatory behaviour in particular to optimize the juvenile development.  相似文献   

9.
The black swallowtail butterfly larvae, Papilio polyxenes, are specialist feeders that have adapted to feeding on plants containing high levels of prooxidant allelochemicals. Third, fourth, and fifth instar larvae were tested for their antioxidant enzyme activities, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPOX), using 850-g supernatants from whole-body homogenates. The overall antioxidant enzyme profile for P. polyxenes was high compared to other insects, with activities ranging as follows: SOD, 1.1–7.5; CAT, 124–343; GR, 1.0–7.5; and GPOX, 0 units. To determine whether these antioxidant enzymes were inducible, P. poly xenes larvae were given a prooxidant challenge by dipping parsley leaves (their diet in the initial studies) in solutions of quercetin, such that the leaves became coated with this prooxidant flavonoid. Mid-fifth instar larvae fed on quercetin-coated leaves were assayed for antioxidant enzyme activities as was previously done with the larvae fed the standard diet. Food consumption and quercetin intake were monitored. SOD activity was increased almost twofold at the highest quercetin concentration tested. CAT and GR activity, on the other hand, were inhibited by increased quercetin consumption, with GR activity completely inhibited at the highest quercetin concentration after 12 h of feeding. GPOX activity, not present in control insects, was also not inducible by a quercetin challenge. These studies point out the key role that the antioxidant enzymes play in insect defenses against plant prooxidants.  相似文献   

10.
Knowledge about torpor in free-ranging subtropical bats is scarce and it is widely believed that low and stable ambient temperatures are necessary for prolonged torpor. We present temperature-telemetry data from free-ranging male (n = 4) and female (n = 4) subtropical vespertilionid bats, Nyctophilus bifax (~10 g), exposed to pronounced daily fluctuations of ambient temperature. All bats used torpor on every day in winter and both males and females exhibited multi-day torpor bouts of up to 5.4 days. Although females were larger than males, patterns of torpor were similar in both sexes. Torpor use was correlated with prevailing weather conditions and, on days when bats remained torpid, maximum ambient temperature was significantly lower than on days when bats aroused. Moreover, the duration of interbout normothermic periods at night increased with increasing average nightly ambient temperature. Skin temperature of torpid bats varied by 10.2 ± 3.6°C day−1 (n = 8, N = 47) and daily minimum skin temperature was positively correlated with the daily minimum ambient temperature. Our study shows that prolonged torpor is an important component of the winter ecology of a subtropical bat and that torpor and activity patterns of N. bifax predominantly reflect prevailing weather conditions.  相似文献   

11.
We tested whether food availability, thermal environment and time of year affect torpor use and temperature selection in the large mouse-eared bat (Myotis myotis) in summer and winter. Food-deprived bats were torpid longer than bats offered food ad libitum. Bats placed in a gradient of low (0 degrees C-25 degrees C) ambient temperatures (T(a)) spent more time in torpor than bats in a gradient of high (7 degrees C-43 degrees C) T(a)'s. However, we did not observe seasonal variations in the use of torpor. Moreover, even when food deprived in winter, bats never entered prolonged torpor at T(a)'s characteristic of their natural hibernation. Instead, bats preferred shallow torpor at relatively high T(a), but they always maintained a difference between body and ambient temperatures of less than 2 degrees C. Calculations based on respirometric measurements of metabolic rate showed that food deprived bats spent less energy per unit of time in torpor than fed individuals, even when they entered torpor at higher T(a)'s. We conclude that T(a) likely serves as a signal of food availability and daily torpor is apparently an adaptation to unpredictable changes in food availability, such as its decrease in summer or its increase in winter. Thus, we interpret hibernation to be a second step in the evolution of heterothermy in bats, which allows survival in seasonal environments.  相似文献   

12.
The primary function of pulmonary surfactant is to reduce the surface tension (ST) created at the air–liquid interface in the lung. Surfactant is a complex mixture of lipids and proteins and its function is influenced by physiological parameters such as metabolic rate, body temperature and breathing. In the microchiropteran bat Chalinolobus gouldii these parameters fluctuate throughout a 24 h period. Here we examine the surface activity of surfactant from warm–active and torpid bats at both 24°C and 37°C to establish whether alterations in surfactant composition correlate with changes in surface activity. Bats were housed in a specially constructed bat room at Adelaide University, at 24°C and on a 8:16 h light:dark cycle. Surfactant was collected from bats sampled during torpor (25<Tb<28°C), and while active (Tb>35°C). Alterations in the lipid composition of surfactant occur with changes in the activity cycle. Most notable is an increase in surfactant cholesterol (Chol) with decreases in body temperature [Codd et al., Physiol. Biochem. Zool. 73 (2000) 605–612]. Surfactant from active bats was more surface active at higher temperatures, indicated by lower STmin and less film area compression required to reach STmin at 37°C than at 24°C. Conversely, surfactant from torpid bats was more active at lower temperatures, indicated by lower STmin and less area compression required to reach STmin at 24°C than at 37°C. Alterations in the Chol content of bat surfactant appear to be crucial to allow it to achieve low STs during torpor.  相似文献   

13.
The antioxidant defenses of the liver, erythrocytes, blood plasma, and interscapular brown adipose tissue (IBAT) of male ground squirrels were compared with those of male rats kept under identical conditions and fed the same diet. Superoxide dismutase (SOD), ascorbate, vitamin E, catalase, glutathione, and enzymes of glutathione metabolism were measured. In general, antioxidant defenses in erythrocytes were lower in ground squirrels than in rats. The same was true in liver, except that catalase-specific activity was higher. In IBAT, ascorbate, vitamin E, catalase, and glutathione reductase were higher than in rat and more of the SOD activity present was cyanide-insensitive (MnSOD). It is suggested that IBAT in ground squirrels may need a relatively greater antioxidant defense because of its important role in thermogenesis, especially in reawakening from hibernation. No major differences in antioxidant defenses between male and female ground squirrels were observed, except that the SOD activity of IBAT was higher in females.  相似文献   

14.
15.
Abstract Total evaporative water loss is the sum of respiratory water loss (RWL) and cutaneous water loss (CWL) and constitutes the main avenue of water loss in bats. Because bats fly and have large surface-to-volume ratios, they potentially have high rates of RWL and CWL. Most species of small insectivorous bats have the ability to reduce their body temperature (T(b)) at rest, which substantially reduces energy expenditure and water loss. We hypothesized that bats reduce evaporative water loss during bouts of deep hypothermia (torpor) by decreasing RWL and CWL. We measured T(b), RWL, CWL, and resting metabolic rate (RMR) in Kuhl's pipistrelle Pipistrellus kuhlii, a small insectivorous bat. In support of our hypothesis, we found that RWL decreased with decreasing RMR. We found that CWL was lower in torpid individuals than in normothermic bats; however, bats in deep torpor had similar or higher CWL than bats in shallow torpor, suggesting that they exert a less effective physiological control over CWL when in deep torpor. Because insectivorous bats spend most of their lives in torpor or hibernation, the regulation of CWL in different heterothermic states has relevant ecological and evolutionary consequences.  相似文献   

16.
Hibernation is an energy-saving strategy which is widely adopted by heterothermic mammals to survive in the harsh environment. The greater horseshoe bat (Rhinolophus ferrumequinum) can hibernate for a long period in the hibernation season. However, the global gene expression changes between hibernation and non-hibernation season in the greater horseshoe bat remain largely unknown. We herein reported a comprehensive survey of differential gene expression in the brain between winter hibernating and summer active greater horseshoe bats using next-generation sequencing technology. A total of 90,314,174 reads were generated and we identified 1,573 differentially expressed genes between active and torpid states. Interestingly, we found that differentially expressed genes are over-represented in some GO categories (such as metabolic suppression, cellular stress responses and oxidative stress), which suggests neuroprotective strategies might play an important role in hibernation control mechanisms. Our results determined to what extent the brain tissue of the greater horseshoe bats differ in gene expression between summer active and winter hibernating states and provided comprehensive insights into the adaptive mechanisms of bat hibernation.  相似文献   

17.
We compared the thermoregulatory abilities of two insectivorous bat species, Tadarida teniotis (mean body mass 32 g) and Otonycteris hemprichii (mean body mass 25 g), that are of different phylogenetic origins and zoogeographic distributions but are sympatric in the Negev Desert. At night, both were normothermic. By day, both were torpid when exposed to ambient temperatures (T(a)) below 25 degrees Celsius, with concomitant adjustments in metabolic rate (MR). Otonycteris hemprichii entered torpor at higher T(a) than T. teniotis, and, when torpid, their body temperatures (T(b)) were 1 degrees -2 degrees Celsius and 5 degrees -8 degrees Celsius above T(a), respectively; MR was correspondingly reduced. At night, the lower critical temperature of T. teniotis was 31.5 degrees Celsius, and that of O. hemprichii was 33 degrees Celsius. Mean nocturnal thermoneutral MR of T. teniotis was 37% greater than that of O. hemprichii. At high T(a), evaporative water loss (EWL) increased markedly in both species, but it was significantly higher in T. teniotis above 38 degrees Celsius. In both species, the dry heat transfer coefficient (thermal conductance) followed the expected pattern for small mammals, by day and by night. Total EWL was notably low in normothermic and torpid animals of both species, much lower than values reported for other bats, indicating efficient water conservation mechanisms in the study species. Comparing thermoregulatory abilities suggests that O. hemprichii is better adapted to hot, arid environments than T. teniotis, which may explain its wider desert distribution. By both standard and phylogenetically informed ANCOVA, we found no differences in basal metabolic rate (BMR) between desert and nondesert species of insectivorous bats, substantiating previous studies suggesting that low BMR is a characteristic common to insectivorous bats in general.  相似文献   

18.
In this study, we measured the concentration of some antioxidant substances in erythrocytes hemolysate, liver, kidney and brain in young and adult camels. It has been found that the activity of the antioxidant enzymes glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD) and the concentration of glutathione, ascorbic acid and alpha-tocopherol are high in both young and adult camels. GSH-Px and CAT activities were higher in adult camels than in the young whereas no significant difference in the activity of SOD between young and adult camels was noticed. Glutathione was present in all tissues studied. Ascorbic acid was found to have significantly higher values in young camels. From this study it could be concluded that, as in other mammals, camel tissues contain a powerful antioxidant system. The liver has the highest contents of antioxidants and antioxidant enzymes indicating that it plays an important role in pro-oxidants detoxification. Age has a variable effect on the antioxidant system in camels.  相似文献   

19.
The antioxidant activity of some compounds buffer the free radicals generated either endogenously or exogenously, thus decreasing the potential damage mediated by oxidation. Recent studies documented that raloxifene has antioxidant properties in vitro. However, there are limited animal studies available to show raloxifene's antioxidant properties. We aimed to investigate the effects of raloxifene on antioxidant enzymes such as SOD, CAT and GPX, TrxR and the levels of GSH and MDA in heart, liver and brain cortex of ovariectomized female rats. Female Sprague Dawley rats weighing 300-350 g (n=24) were divided into three groups: (I) Eight non-ovariectomized rats were used as naive controls without any treatment (non-ovariectomized group, n=8). Five weeks after ovariectomy, (II) Ovariectomized placebo group (n=8) was given physiological saline, and (III) Raloxifene group (n=8) was given raloxifene 1 mg/kg sc. daily for 12 days. Ovariectomy induced significant increases on SOD, GPX, CAT activity and MDA levels in brain, heart and liver tissues compared to non-ovariectomized rats ( p<0.05). Raloxifene treatment led to decreased levels of SOD activity in heart, GPX activity in brain and CAT activity in liver tissue when compared to ovariectomized group ( p<0.05) but there was no change in activity of TrxR in all groups. The levels of MDA in brain, heart and liver tissues increased in ovariectomized group when compared to non-ovariectomized rats ( p<0.05). Raloxifene had a significant attenuating effect on the levels of MDA in brain and heart tissues. Our results also indicate that the levels of GSH in brain, heart and liver tissue decreased when compared to non-ovariectomized rats. Raloxifene treatment was observed to significantly increase the levels of GSH in brain and heart tissues ( p<0.05). However, there were insignificant differences for the GSH levels in liver tissues of ovariectomized placebo or raloxifene groups. In conclusion, our results demonstrate that raloxifene may be more effective against oxidative stress in heart and brain than in liver tissue.  相似文献   

20.
The effect of combined-factors (hypoxia+copper) on the biochemical parameters and antioxidant defenses were studied in the neotropical fish Piaractus mesopotamicus. Fish were exposed for 48 h to 0.4 mg Cu(2+) L(-1) (0.4Cu), hypoxia=50 mm Hg (Hpx), and 0.4 mg Cu(2) L(-1)+hypoxia=50 mm Hg (0.4CuHpx). The exposure to 0.4Cu increased the reactive oxygen species (ROS) in the liver, accompanied by increases in superoxide dismutase (SOD) and decreases in catalase (CAT) activity, showing the influence of copper in this protection. The exposure to Hpx decreased the activity of glutathione peroxidase (GSH-Px) and CAT. Exposure to a combined-factor caused an increase in the ROS production followed by an increase in SOD and a decrease in GSH-Px and CAT. At 0.4Cu, fish presented a reduction in CAT, while in Hpx decreases in SOD, CAT and GSH-Px were observed in red muscles. Single-factors were insufficient to cause ROS production. In combined-factors, increased ROS formation and decreased SOD, CAT and GSH-Px were observed. RBC increased in all groups, but only under combined-factors was there an increase in hemoglobin. Copper plasma concentration increased in groups exposed to copper. Na(+)/K(+)-ATPase activity in gills decreased in 0.4Cu and 0.4CuHpx, and increased in Hpx. Metallothionein concentration in gills increased under combined-factors. Combined-factors caused significant disturbances in the antioxidant defenses and biochemical parameters than single-factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号