首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background  

The bioavailability of iron is quite low since it is usually present as insoluble complexes. To solve the bioavailability problem microorganisms have developed highly efficient iron-scavenging systems based on the synthesis of siderophores that have high iron affinity. The systems of iron assimilation in microorganisms are strictly regulated to control the intracellular iron levels since at high concentrations iron is toxic for cells. Streptomyces pilosus synthesizes the siderofore desferrioxamine B. The first step in desferrioxamine biosynthesis is decarboxylation of L-lysine to form cadaverine, a desferrioxamine B precursor. This reaction is catalyzed by the lysine decarboxylase, an enzyme encoded by the desA gene that is repressed by iron.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
In Gram-positive bacteria, the expression of iron-regulated genes is mediated by a class of divalent metal-dependent regulatory (DmdR) proteins. We cloned and characterized two dmdR genes of Streptomyces coelicolor that were located in two different nonoverlapping cosmids. Functional analysis of dmdR1 and dmdR2 was performed by deletion of each copy. Deletion of dmdR1 resulted in the derepression of at least eight proteins and in the repression of three others, as shown by 2D proteome analysis. These 11 proteins were characterized by MALDI-TOF peptide mass fingerprinting. The proteins that show an increased level in the mutant correspond to a DNA-binding hemoprotein, iron-metabolism proteins and several divalent metal-regulated enzymes. The levels of two other proteins--a superoxide dismutase and a specific glutamatic dehydrogenase--were found to decrease in this mutant. Complementation of the dmdR1-deletion mutant with the wild-type dmdR1 allele restored the normal proteome profile. By contrast, deletion of dmdR2 did not affect significantly the protein profile of S. coelicolor. One of the proteins (P1, a phosphatidylethanolamine-binding protein), overexpressed in the dmdR1-deleted mutant, is encoded by ORF3 located immediately upstream of dmdR2; expression of both ORF3 and dmdR2 is negatively controlled by DmdR1. Western blot analysis confirmed that dmdR2 is only expressed when dmdR1 is disrupted. Species of Streptomyces have evolved an elaborated regulatory mechanism mediated by the DmdR proteins to control the expression of divalent metal-regulated genes.  相似文献   

12.
A promoter which controls expression of the pristinamycin multidrug resistance gene ( ptr ) in Streptomyces pristinaspiralis could be induced by physiological stresses in both Streptomyces spp. and Escherichia coli . In S. pristinaspiralis , the ptr promoter ( Pptr ) was induced by pristinamycin I (PI) or pristinamycin II (PII). Streptomyces lividans was adopted as a convenient heterologous host for studies of Pptr regulation since it has no known pristinamycin biosynthetic genes. Two key regulatory features were documented in these studies: many (19 of 70) antibiotics and chemicals with no common targets or structural features induced the Pptr ; induction with PI was most efficient during a transition phase when antibiotic biosynthetic genes are switched on. In Streptomyces coelicolor, Pptr activity was similarly inducible by PI and not dependent on sigma factors HrdA, HrdC, or HrdD. In E. coli, Pptr cloned in the bifunctional promoter probe vector plJ2839 was functional and activated upon entry into stationary phase in the absence of exogenous inducer. Finally, gel-retardation studies demonstrated a Pptr -binding protein in S. lividans (where its activity was PI-inducible), S. coelicolor and S. pristinaespiralis . The fact that this activity was not detected in E. coli suggested the existence of another regulatory system perhaps also present in Streptomyces .  相似文献   

13.
14.
Brünker P  McKinney K  Sterner O  Minas W  Bailey JE 《Gene》1999,227(2):125-135
Streptomyces arenae produces the aromatic polyketide naphthocyclinone, which exhibits activity against Gram-positive bacteria. A cosmid clone containing the putative naphthocyclinone gene cluster was isolated from a genomic library of S. arenae by hybridization with a conserved region from the actinorhodin PKS of S. coelicolor. Sequence analysis of a 5.5-kb DNA fragment, which hybridizes with the actI probe, revealed three open reading frames coding for the minimal polyketide synthase. A strong sequence similarity was found to several previously described ketosynthases, chain length factors and acyl carrier proteins from other polyketide gene clusters. An additional open reading frame downstream of the PKS genes of S. arenae showed 53% identity to act VII probably encoding an aromatase. Another open reading frame was identified in a region of 1.436 bp upstream of the PKS genes, which, however, had no similarity to known genes in the database. Approximately 8 kb upstream of the PKS genes, a DNA fragment was identified that hybridizes to an actVII--actIV specific probe coding for a cyclase and a putative regulatory protein, respectively. Disruption of the proposed naphthocyclinone gene cluster by insertion of a thiostrepton resistance gene completely abolished production of naphthocyclinones in the mutant strain, showing that indeed the naphthocyclinone gene cluster had been isolated. Heterologous expression of the minimal PKS genes in S. coelicolor CH999 in the presence of the act ketoreductase led to the production of mutactin and dehydromutactin, indicating that the S. arenae polyketide synthase forms a C-16 backbone that is subsequently dimerized to build naphthocyclinone. The functions of the proposed cyclase and aromatase were examined by coexpression with genes from different polyketide core producers.  相似文献   

15.
We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.  相似文献   

16.
17.
18.
The genes of Streptomyces coelicolor A3(2) encoding catalytic subunits (ClpP) and regulatory subunits (ClpX and ClpC) of the ATP-dependent protease family Clp were cloned, mapped and characterized. S. coelicolor contains at least two clpP genes, clpP1 and clpP2, located in tandem upstream from the clpX gene, and at least two unlinked clpC genes. Disruption of the clpP1 gene in S. lividans and S. coelicolor blocks differentiation at the substrate mycelium step. Overexpression of clpP1 and clpP2 accelerates aerial mycelium formation in S. lividans, S. albus and S. coelicolor. Overproduction of ClpX accelerates actinorhodin production in S. coelicolor and activates its production in S. lividans.  相似文献   

19.
20.
nsdA基因是在天蓝色链霉菌中发现的抗生素合成负调控基因。以nsdA基因片段为探针,通过Southern杂交发现nsdA存在于多种链霉菌中。根据天蓝色链霉菌和阿维链霉菌的nsdA序列设计PCR引物,扩增多种链霉菌中nsdA基因并测序。发现在不同链霉菌中nsdA基因的相似性高达77%~100%。其中变铅青链霉菌与天蓝色链霉菌A3(2)的nsdA序列100%一致。变铅青链霉菌通常不合成放线紫红素,中断nsdA获得的突变菌株WQ2能够合成放线紫红素;在WQ2中重新引入野生型nsdA,又失去产抗生素能力。表明nsdA的中断可以激活变铅青链霉菌中沉默的放线紫红素生物合成基因簇的表达;nsdA的广泛存在及其序列高度保守则提示可以尝试用于这些菌种的抗生素高产育种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号