首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to cues signifying the approach of winter, adult Artemia franciscana produce encysted embryos that enter diapause. We show that respiration rates of diapause embryos collected from the field (Great Salt Lake, Utah) are reduced up to 92% compared with postdiapause embryos when measured under conditions of normoxia and full hydration. However, mitochondria isolated from diapause embryos exhibit rates of state 3 and state 4 respiration on pyruvate that are equivalent to those from postdiapause embryos with active metabolism; a reduction in these rates (15%-27%) is measured with succinate for two of three collection years. Respiratory control ratios for diapause mitochondria are comparable to or higher than those from postdiapause embryos. The P : O flux ratios are statistically identical. Our calculations suggest that respiration of intact, postdiapause embryos is operating close to the state 3 oxygen fluxes measured for isolated mitochondria. Cytochrome c oxidase (COX) activity is 53% lower in diapause mitochondria during one collection year; the minimal impact of this COX reduction on mitochondrial respiration appears to be due to the 31% excess COX capacity in A. franciscana mitochondria. Transmission electron micrographs of embryos reveal mitochondria that are well differentiated and structurally similar in both states. As inferred from the similar amounts of mitochondrial protein extractable, tissue contents of mitochondria in diapause and postdiapause embryos are equivalent. Thus, metabolic depression during diapause cannot be fully explained by altered properties of isolated mitochondria. Rather, mechanisms for active inhibition or substrate limitation of mitochondrial metabolism in vivo may be operative.  相似文献   

2.
The mechanisms by which nucleotides stimulate the activity of the ATP-regulated K(+)-channel (KATP-channel) were investigated using inside-out patches from mouse pancreatic beta-cells. ATP produces a concentration-dependent inhibition of channel activity with a Ki of 18 microns. The inhibitory action of ATP was counteracted by ADP (0.1 mM) and GDP (0.2 mM) but not GTP (1 mM). Stimulation of channel activity was also observed when ADP, GDP and GTP were applied in the absence of ATP. The ability of ADP and GDP to reactivate KATP-channels blocked by ATP declined with time following patch excision and after 30-60 min these nucleotides were without effect. During the same time period the ability of ADP and GTP to stimulate the channel in the absence of ATP was lost. In fact, ADP now blocked channel activity with 50% inhibition being observed at approximately 0.1 mM. By contrast, GDP remained a stimulator in the absence of ATP even when its ability to evoke channel activity in the presence of ATP was lost. These observations show that nucleotide-induced activation of the KATP-channel does not involve competition with ATP for a common inhibitory site but involves other processes. The data are consistent with the idea that nucleotides modulate KATP-channel activity by a number of different mechanisms that may include both regulation of cytosolic constituents and direct interaction with the channel and associated control proteins.  相似文献   

3.
The effects of Mg(2+) and K(+) ions on the self-splicing inhibition of the td (thymidylate synthase gene) intron RNA by spectinomycin were investigated. The maximum splicing activity occurred at 20 mM KCl. The K(m) and V(max) values for GTP in the presence of 5 mM Mg(2+) are 2.25 microM and 0.55 min(-1), whereas those for GTP both in the presence of 5 mM Mg(2+) and 5 mM K(+) are 1.23 microM and 0. 46 min(-1), respectively. Spectinomycin at 10 mM concentration inhibited the splicing by about 10%, but at 20 mM concentration, the splicing rate was inhibited by about 63%. The splicing inhibition by the low concentration of spectinomycin was overcome markedly as the concentration of Mg(2+) ion was raised. At 30 mM spectinomycin, however, the splicing inhibition was not significantly affected by increasing the concentration of Mg(2+). A similar activation of the splicing rate was observed as the concentration of K(+) ion was increased. The concentration of K(+) ion required for the normal recovery of the splicing was much higher than that of Mg(2+) ion. Unlike Mg(2+) ion, 30 mM K(+) ion effectively alleviated the splicing inhibition by spectinomycin at its high concentration. The results indicate that K(+) and Mg(2+) ions may show mechanistically different interactions with spectinomycin in the self-splicing reaction of the td intron RNA.  相似文献   

4.
Cytosolic pyruvate kinase (ATP: Pyruvate phosphotransferase, EC 2.7.1.40; PKc) was purified to apparent homogeneity with about 22% recovery from developing seeds of Brassica campestris using (NH4)2SO4 fractionation, DEAE-cellulose chromatography, gel filtration through Sepharose-CL-6B and affinity chromatography through reactive Blue Sepharose-CL-6B. The purified enzyme with molecular mass of about 214 kDa was a heterotetramer with subunit molecular mass of 55 and 57 kDa. The enzyme showed maximum activity at pH 6.8 and absolute requirement for a divalent (Mg2+) and a monovalent (K+) cation for activity. Typical Michaelis-Menten kinetics was obtained for both the substrates with Km values of 0.10 and 0.11 mM for PEP and ADP, respectively. The enzyme could also use UDP or GDP as alternative nucleotides, but with lower Vmax and lesser affinities. The enzyme was inhibited by glutamate, glutamine, fumarate, citrate, isocitrate, oxalate, 2-PGA, ATP, UTP and GTP and activated by glucose-6-phosphate, fructose-1,6-bisphosphate and Pi, suggesting its regulation mainly by TCA cycle intermediates and the cellular need for carbon skeletons for amino acid biosynthesis. ATP inhibition was of competitive type with respect to PEP and non-competitive with respect to ADP. Similarly, oxalate inhibition was also of competitive type with respect to PEP and non-competitive with respect to ADP. Initial velocity and product inhibition studies except for pyruvate inhibition were consistent for a compulsory-ordered tri-bi mechanism.  相似文献   

5.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

6.
TRPM7 is a Ca(2+)- and Mg(2+)-permeable cation channel that also contains a protein kinase domain. While there is general consensus that the channel is inhibited by free intracellular Mg(2+), the functional roles of intracellular levels of Mg.ATP and the kinase domain in regulating TRPM7 channel activity have been discussed controversially. To obtain insight into these issues, we have determined the effect of purine and pyrimidine magnesium nucleotides on TRPM7 currents and investigated the possible involvement of the channel's kinase domain in mediating them. We report here that physiological Mg.ATP concentrations can inhibit TRPM7 channels and strongly enhance the channel blocking efficacy of free Mg(2+). Mg.ADP, but not AMP, had similar, albeit smaller effects, indicating a double protection against possible Mg(2+) and Ca(2+) overflow during variations of cell energy levels. Furthermore, nearly all Mg-nucleotides were able to inhibit TRPM7 activity to varying degrees with the following rank in potency: ATP > TTP > CTP > or = GTP > or = UTP > ITP approximately free Mg(2+) alone. These nucleotides also enhanced TRPM7 inhibition by free Mg(2+), suggesting the presence of two interacting binding sites that jointly regulate TRPM7 channel activity. Finally, the nucleotide-mediated inhibition was lost in phosphotransferase-deficient single-point mutants of TRPM7, while the Mg(2+)-dependent regulation was retained with reduced efficacy. Interestingly, truncated mutant channels with a complete deletion of the kinase domain regained Mg.NTP sensitivity; however, this inhibition did not discriminate between nucleotide species, suggesting that the COOH-terminal truncation exposes the previously inaccessible Mg(2+) binding site to Mg-nucleotide binding without imparting nucleotide specificity. We conclude that the nucleotide-dependent regulation of TRPM7 is mediated by the nucleotide binding site on the channel's endogenous kinase domain and interacts synergistically with a Mg(2+) binding site extrinsic to that domain.  相似文献   

7.
Carbamoyl phosphate synthetase of pea shoots (Pisum sativum L.) was purified 101-fold. Its stability was greatly increased by the addition of substrates and activators. The enzyme was strongly inhibited by micromolar amounts of UMP (Ki less than 2 mum). UDP, UTP, TMP, and ADP were also inhibitory. AMP caused either slight activation (under certain conditions) or was inhibitory. Uridine nucleotides were competitive inhibitors, as was AMP, while ADP was a noncompetitive inhibitor. Enzyme activity was increased manyfold by the activator ornithine. Ornithine acted by increasing the affinity for Mg.ATP by a factor of 8 or more. Other activators were IMP, GMP, ITP, and GTP, IMP, like ornithine, increased the Michaelis constant for Mg.ATP. The activators ornithine, GMP, and IMP (but not GTP and ITP) completely reversed inhibition caused by pyrimidine nucleotides while increasing the inhibition caused by ADP and AMP.  相似文献   

8.
Mitochondria isolated from embryos of the crustacean Artemia franciscana lack the Ca(2+)-induced permeability transition pore. Although the composition of the pore described in mammalian mitochondria is unknown, the impacts of several effectors of the adenine nucleotide translocase (ANT) on pore opening are firmly established. Notably, ADP, ATP and bongkrekate delay, whereas carboxyatractyloside hastens, Ca(2+)-induced pore opening. Here, we report that adenine nucleotides decreased, whereas carboxyatractyloside increased, Ca(2+) uptake capacity in mitochondria isolated from Artemia embryos. Bongkrekate had no effect on either Ca(2+) uptake or ADP-ATP exchange rate. Transmission electron microscopy imaging of Ca(2+)-loaded Artemia mitochondria showed needle-like formations of electron-dense material in the absence of adenine nucleotides, and dot-like formations in the presence of adenine nucleotides or Mg(2+). Energy-filtered transmission electron microscopy showed the material to be rich in calcium and phosphorus. Sequencing of the Artemia mRNA coding for ANT revealed that it transcribes a protein with a stretch of amino acids in the 198-225 region with 48-56% similarity to those from other species, including the deletion of three amino acids in positions 211, 212 and 219. Mitochondria isolated from the liver of Xenopus laevis, in which the ANT shows similarity to that in Artemia except for the 198-225 amino acid region, demonstrated a Ca(2+)-induced bongkrekate-sensitive permeability transition pore, allowing the suggestion that this region of ANT may contain the binding site for bongkrekate.  相似文献   

9.
In rat fat cell membranes, a 72-hour fasting fails to alter the adenylate cyclase stimulatory responses to Mn2+, forskolin and cholera toxin and the cholera toxin catalyzed [alpha-32P] ADP ribose incorporation into the Mr = 42,000 and 46,000/48,000 alpha s peptides of Ns. In contrast, dose-response curves for GTP-stimulation of basal and isoproterenol-stimulated adenylate cyclase display higher maximal responses in fasted rats under conditions restraining (2 mM Mg2+) but not promoting (10 mM Mg2+) the dissociation of Ns. Moreover, at 10 mM Mg2+, the sensitivity of isoproterenol-stimulated adenylate cyclase to GTP is clearly increased in fasted rats. Finally, fasting reduces by 40% the lag-phase of adenylate cyclase activation by Gpp(NH)p. Taken together, these results are consistent with the hypothesis that the permissive effect of fasting on the fat cell adenylate cyclase response to stimulatory agonists is related to increased ability of Ns and the ternary H.R.Ns. complex to dissociate which is likely due to enhanced Ns affinity for guanine nucleotides.  相似文献   

10.
1. A study was made of the hydrolysis, at pH9.0, of ATP and ADP catalysed by pig kidney alkaline phosphatase. Both of these nucleoside pyrophosphates are substrates for the enzyme; K(m) values are 4x10(-5)m for ATP and 6.3x10(-5)m for ADP. V(max.) for ADP is approximately double that of ATP. 2. Above 0.1mm approximately, both ATP and ADP are inhibitory, but the inhibition is reversible by the addition of Mg(2+) ions to form MgATP(2-) or MgADP(-) complexes. The complexes, besides being non-inhibitory, are also substrates for the enzyme with K(m) values identical with those of the respective free nucleotides. 3. Mg(2+) ions are inhibitory when present in excess of ATP or ADP. The degree of inhibition is greater with ATP as substrate, but with both ATP and ADP a mixed competitive-non-competitive type of inhibition is observed. 4. It is suggested that under normal conditions the enzyme is inhibited by cellular concentrations of ATP plus ADP but that an increase in the concentration of Mg(2+) ions stimulates activity by relieving nucleoside pyrophosphate inhibition. The properties may be of importance in the regulation of the transport of bivalent cations.  相似文献   

11.
The effects of Mg2+ and nucleotides on the dephosphorylation process of the (K+ + H+)-ATPase phosphoenzyme have been studied. Phosphorylation with [gamma-32P]ATP is stopped either by addition of non-radioactive ATP or by complexing of Mg2+ with EDTA. The dephosphorylation process is slow and monoexponential when dephosphorylation is initiated with ATP. When phosphorylation is stopped by complexing of Mg2+ the dephosphorylation process is fast and biexponential. The discrepancy could be explained by a nucleotide mediated inhibition of the dephosphorylation process. The I0.5 for ATP for this inhibition is 0.1 mM and that for ADP is 0.7 mM, suggesting that a low-affinity binding site is involved. When Mg2+ is present in millimolar concentrations in addition to the nucleotides the dephosphorylation process is enhanced. Evidence has been obtained that Mg2+ acts through lowering the affinity for ATP. In contrast to K+, Mg2+ does not stimulate dephosphorylation in the absence of nucleotides. Mg2+ and nucleotides show the same interaction in the dephosphorylation process of a phosphoenzyme generated from inorganic phosphate. These findings suggest the presence of a low-affinity nucleotide binding site on the phosphoenzyme, as is found in the (Na+ + K+)-ATPase phosphoenzyme. This low-affinity binding site may function as a feed-back mechanism in proton transport.  相似文献   

12.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

13.
Studies on quantitation of RNA synthesis in eucaryotic cells have frequently used adenosine as the radioactively labeled precursor, largely because of the convenience of the firefly luciferin-luciferase assay in measuring ATP pool specific activity (1,2). This could result in some difficulties if the addition of poly(A) to the 3′ OH end of RNA represents a significant portion of total incorporation, as is the case in sea-urchin embryos (3). In addition, in some cases, the ATP pool may be large enough to prevent the use of adenosine as an effective labeling agent. Hence, a simple and sensitive method for the determination of the specific activity of the other nucleic acid precursor pools would be of value.Although the crystalline luciferase is specific for ATP, extracts of firefly lanterns most commonly used for quantitating ATP (4–9) also exhibit activity with other ribonucleoside triphosphates, adenosine tetraphosphate, ADP, and the deoxyribonucleoside triphosphates. This activity is due to the presence of contaminating enzymes such as nucleoside 5′-diphosphate kinase and adenylate kinase which catalyze the formation of ATP from these nucleotides and trace amounts of ADP, also present in the extracts (10–13). Recently, Manandhar and Van Dyke (14) have reported a procedure for quantitating picomole levels of GTP with a crude extract of firefly lanterns. In the present study, we have adapted their procedure to develop an assay for GTP pool specific activity in Xenopus laevis oocytes microinjected with [8-3H]GTP. Our assay may be extended to the analysis of any nucleoside triphosphate pool, provided that an adequate chromatography system is available for the separation of the extracted nucleotides.  相似文献   

14.
Some properties of adenosine kinase from Ehrlich ascites-tumour cells   总被引:5,自引:4,他引:1  
1. Adenosine kinase was measured in dialysed extracts from Ehrlich ascites-tumour cells by a chromatographic procedure. 2. In the absence of added Mg(2+) the K(m) values for ATP and adenosine were 0.22mm and 2.8mum respectively. 3. The maximum velocity of adenosine kinase with free ATP was about three times that with the Mg(2+)-ATP complex. Free Mg(2+) was a non-competitive inhibitor of the reaction. A small amount of added Mg(2+), Mn(2+) or Ca(2+) was required for maximum adenosine kinase activity after cation bound to the enzyme had been released by treatment with p-chloromercuribenzoate and then removed by dialysis. 4. GTP, ITP, deoxy-ATP, deoxy-GTP, CTP, xanthosine triphosphate, UTP and thymidine triphosphate could partially or completely replace ATP as a phosphate donor. 5. The reaction of ATP with adenosine kinase was competitively inhibited by AMP, GMP, IMP, ADP, deoxy-ADP and IDP (K(i) 0.2, 1.1, 5.9, 1.2, 0.5 and 0.78mm respectively). Enzymic activity was markedly affected by the relative concentrations of AMP, ADP and ATP in assay mixtures. 6. The results are discussed in terms of possible mechanisms regulating the rate of adenosine kinase in vivo.  相似文献   

15.
The present paper characterizes the Na+-stimulated ATPase activity present in basal-lateral plasma membranes from guinea-pig kidney proximal tubular cells. These characteristics are compared with those of the (Na+ + K+)-stimulated ATPase activity, and they are: (A) Na+-ATPase activity: (1) requires Mg2+; (2) may be activated by mu molar quantities of Ca2+; (3) optimal ratio Mg:ATP = 5:1-2 and Ka for Mg:ATP = 3:0.60 mM; (4) Ka for Na+:8 mM; (5) does not require K+; (6) is only stimulated by Na+ and Li+ (in a lower extent); (7) is similarly stimulated by the Na+ salt of different anions; (8) hydrolyzes only ATP; (9) optimal temperature: 47 degrees C; (10) optimal pH: 6.9; (11) is ouabain insensitive; (12) is totally inhibited by 1.5 mM ethacrynic acid, 2 mM furosemide and 0.75 mM triflocin. (B) (Na+ + K+)-ATPase activity: (1) also requires Mg2+; (2) is inhibited by Ca2+; (3) optimal ratio Mg:ATP = 1.25:1 and Ka for Mg:ATP = 0.50: 0.40 mM; (4) Ka for Na+: 14 mM (data not shown); (5) needs K+ together with Na+; (6) K+ may be substituted by: Rb+ greater than NH+4 greater than Cs+; (7) is anion insensitive; (8) hydrolyzes mostly ATP and to a lesser extent GTP, ITP, UTP, ADP, CTP; (9) optimal temperature: 52 degrees C; (10) optimal pH: 7.2; (11) 100% inhibited by 1 mM ouabain; (12) 63% inhibited by 1.5 mM ethacrynic acid, 10% inhibited by 2 mM furosemide and insensitive to 0.75 mM triflocin.  相似文献   

16.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

17.
Adenylate cyclase in particulate fractions from rat adrenal glands is subject to regulation by purine nucleotides, particularly guanine nucleotides. While GTP activates the enzyme, this effect is not evident in all particulate fractions. Following dialysis of the refractory fractions activation by GTP is observed, an indication that endogenous nucleotides may obscure the effects of added GTP. The analog, guanyl-5'-yl imidodiphosphate (Gpp(NH)p gives considerable more activity than does GTP. GDP, on the other hand, is inhibitory, an effect revealed only in the absence of a nucleotide-regenerating solution. GDP blocks the action of both GTP and Gpp(NH)p. These results show that the gamma-phosphate of the nucleotide is required for but need not be metabolized in the activation process. At low substrate concentration (0.1 mM ATP or adenyl-5'-yl imidodiphosphate) stimulation of the enzyme by ACTH occurs only in the presence of added guanine nucleotide (GTP or Gpp(NH)p); the hormone and nucleotide act synergistically. While both GTP and Gpp(NH)p inhibit fluoride-stimulated activity, the level of fluoride required to demonstrate such inhibition appears not to be related to the level of fluoride required for activation of the enzyme. In the presence of GTP, or GTP plus ACTH, the enzyme exhibits normal Michaelis-Menten kinetics with respect to substrate utilization (K-m equal to 0.16 mM). In the activated state, produced with ACTH plus GTP, the enzyme is less susceptible to inhibition by a species of ATP uncomplexed with Mg2+, but is more susceptible to inhibition by Mg2+. These results demonstrate that fundamental differences exist between different states of the adenylate cyclase. The difficulties in describing kinetically the regulation of adenylate cyclase systems in view of the multiple actions of nucleotides and magnesium are discussed.  相似文献   

18.
A 4.5-kb BamHI fragment of chromosomal DNA of Streptomyces collinus containing gene ftsZ was cloned and sequenced. Upstream of ftsZ are localized genes ftsQ, murG, and ftsW, and downstream is yfiH. Gene ftsA is not adjacent to ftsZ or other genes of the cloned fragment. Protein FtsZ was isolated and characterized with respect to its binding to GTP and GTPase activity. The binding of GTP to FtsZ was Ca(2+) or Mg(2+) dependent with an optimum at 10 mM. The rate of GTP hydrolysis by FtsZ was stimulated by KCl. The presence of Ca(2+) (3-5 mM) resulted in a significant increase of GTPase activity. Higher concentrations of Ca(2+) than 5 mM had an inhibitory effect on GTPase activity. These results indicate that divalent ions (Ca(2+) or Mg(2+)) can be involved in regulation of GTP binding and hydrolysis of FtsZ. The maximum level of FtsZ was detected in aerial mycelium when spiral loops and sporulation septa were formed. FtsZ is degraded after finishing sporulation septa.  相似文献   

19.
O'neal TD  Joy KW 《Plant physiology》1975,55(6):968-974
Of a variety of purine and pyrimidine nucleotides tested, only ADP and 5'AMP significantly inhibited the Mg(2+)-dependent activity of pea leaf glutamine synthetase. They were less effective inhibitors where Mn(2+) replaced Mg(2+). They were competitive inhibitors with respect to ATP, with inhibition constant (Ki) values of 1.2 and 1.8 mm, respectively. The energy charge significantly affects the activity of glutamine synthetase, especially with Mg(2+). Of a variety of amino acids tested, l-histidine and l-ornithine were the most inhibitory, but significant inhibition was seen only where Mn(2+) was present. Both amino acids appeared to compete with l-glutamate, and the Ki values were 1.9 mm for l-histidine (pH 6.2) and 7.8 mm for l-ornithine (pH 6.2). l-Alanine, glycine, and l-serine caused slight inhibition (Mn(2+)-dependent activity) and were not competitive with ATP or l-glutamate.Carbamyl phosphate was an effective inhibitor only when Mn(2+) was present, and did not compete with substrates. Inorganic phosphate and pyrophosphate caused significant inhibition of the Mg(2+)-dependent activity.  相似文献   

20.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号