首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development, and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however, there is evidence that males and females respond to environmental stimuli differently, and the divergent phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease, while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes, hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria. The organelles have solely maternal transmission and exert differential effects on males and females. Altogether, research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases.  相似文献   

2.
3.
4.
Plant sex determination and sex chromosomes   总被引:15,自引:0,他引:15  
Charlesworth D 《Heredity》2002,88(2):94-101
Sex determination systems in plants have evolved many times from hermaphroditic ancestors (including monoecious plants with separate male and female flowers on the same individual), and sex chromosome systems have arisen several times in flowering plant evolution. Consistent with theoretical models for the evolutionary transition from hermaphroditism to monoecy, multiple sex determining genes are involved, including male-sterility and female-sterility factors. The requirement that recombination should be rare between these different loci is probably the chief reason for the genetic degeneration of Y chromosomes. Theories for Y chromosome degeneration are reviewed in the light of recent results from genes on plant sex chromosomes.  相似文献   

5.
6.
7.
8.
9.
The dynamic organization of eukaryotic genomes in cell nuclei recently came into the focus of research interest. The kinetics of genome dynamics can be addressed only by approaches involving live cell microscopy. Different methods are available to visualize chromatin, specific chromatin fractions, or individual chromosome territories within nuclei of living mammalian cells. Appropriate labeling procedures as well as cell chamber systems and important controls for live cell microscopy are described.  相似文献   

10.
The greater glider, currently but incorrectly known as Schoinobates volans, is widely distributed in forested regions in eastern Australia. All animals studied from six different localities had 20 autosomes but there were four chromosomally distinct populations. At Royal National Park, N.S.W., all female greater gliders studied had 22 chromosomes including two large submetacentric X chromosomes with subterminal secondary constrictions in their longer arms. This form of X chromosome occurred also at Bondo State Forest, Myall Lakes and Coff's Harbour, N.S.W., and at Eidsvold, Qld. At Coomooboolaroo, Qld, the X chromosome was also a large submetacentric but a secondary constriction occurred in the shorter arm. Two chromosomally distinct types apparently occur in Royal National Park, one with XY males as in all other populations, and one with XY1Y2 males. Y or Y1, but not Y2, chromosomes were eliminated from the bone marrow in all populations but were present in spermatogonia, primary spermatocytes and cultured fibroblasts. Animals from Bondo State Forest had three or more acrocentric or metacentric supernumerary chromosomes.  相似文献   

11.
12.
A presumptive mechanism of X inactivation has been investigated by using tritiated uridine-induced chromosome aberrations to distinguish active from inactive X chromosome arms in the insect Gryllotalpa fossor. Previous work on therian mammals has shown that constitutive and facultative heterochromatin are less susceptible to breakage by 3H-Urd than euchromatin (active). The present study indicates that, irrespective of the presence of two X chromosomes in females, only one of these is affected as in males and that the total number of aberrations induced by 3H-Urd in both male and female Gryllotalpa is the same. This suggests that in the female only one arm of one X chromosome is active and that a facultative heterochromatinization of the homologous arm of the other X is operative coupled with the presence of constitutive heterochromatin in the second arm of both X chromosomes.  相似文献   

13.
14.
The two X chromosomes in tetraploid spermatogonial cells from Gryllotalpa fossor respond differentially to the production of chromatid aberrations by 3H-uridine (3H-U). As in diploid female somatic cells, only the euchromatic arm of one X shows such aberrations. The equivalent arm of the other X and the constitutive arms of both Xs are not affected. This differential response of the homologous arms of the two Xs appears to be due to a facultative heterochromatinization of one of them. It is suggested that an imprinting process, which has been assumed to occur during fertilization in other cases of X-inactivation, may not be necessary for the differential regulation of two X chromosomes in this case.  相似文献   

15.
16.
Electron microscopy of purified chromatin subunits (v-bodies [17] or nucleosomes [2] revealed a hole or at least a deep indentation in the globular nucleosome. A hole in the nucleosome was visualized using rotatory shadowing with platinum-palladium or more directly, by negative staining with sodium phosphotungstate. The diameter of the hole as measured from negatively stained samples is 10-25 A. The external diameter of the negatively stained nucleosome equals 75 +/- 15 A. Although most of the data are formally compatible with either a hole or a deep indentation in the nucleosome, some views of the particles in the negatively stained samples suggest a hole rather than an indentation. The possible significance of a toroidal structure of the chromatin subunit is discussed in the accompanying paper [3].  相似文献   

17.
A new model for the fine structure of the chromatin subunit (or 'nucleosome') is proposed. The model is based on previous experimental findings [1-14] and on two new suggestions, namely: (1) Eight histones form a toroidal-shaped histone coe of nucleosome and are arranged in the following ciruclar sequence: (see article). (2) DNA is 'kinked' around a toroidal-shaped histone core in a 'solenoid-like' mode, each kink occurring every 10 base pairs along DNA. The electron microscopic evidence for a toroidal shape of the nucleosome is described in the preceding paper [13]. The possibility of the existence of kinks in the DNA double helix was considered recently by Crick and Klug [14]. The proposed model of the nucleosome, being more detailed than earlier models permits us to explain in direct structural terms the yet unordered set of data bearing on the pattern of histone-histone interactions in chromatin, the results of a mild deoxyribonuclease digestion of DNA within the nucleosomal particle and also the quantitative data on the unwinding of the DNA duplex upon formation of the nucleosome.  相似文献   

18.
The enzymes that transcribe, recombine, package, and duplicate the eukaryotic genome all are highly processive and capable of generating large forces. Understanding chromosome function therefore will require analysis of mechanics as well as biochemistry. Here we review development of new biophysical-biochemical techniques for studying the mechanical properties of isolated chromatin fibers and chromosomes. We also discuss microscopy-based experiments on cells that visualize chromosome structure and dynamics. Experiments on chromatin tell us about its flexibility and fluctuation, as well as quantifying the forces generated during chromatin assembly. Experiments on whole chromosomes provide insight into the higher-order organization of chromatin; for example, recent experiments have shown that the mitotic chromosome is held together by isolated chromatin-chromatin links and not a large, mechanically contiguous non-DNA "scaffold".  相似文献   

19.
The X and Y chromosomes of the musk shrew are the two largest in the complement and they regularly form a single chiasma during meiosis. This chiasma is located in the short arms of the X and Y, both of which show partial C-banding at meiosis. The in vitro incorporation of 5-bromodeoxyuridine/tritiated thymidine during late S reveals that the non-C-band region of the Y finishes replication later than the C-band positive heterochromatin. During meiosis, the sex bivalent opens out early in pachytene to reveal a single chiasma which persists until late metaphase-I. In surface-spread, silver-stained meiocytes, the sex bivalent morphology changes from a phase of extensive pairing to one which includes a visible chiasma through a brief diffuse stage. Observations on C-banded meiocytes show a shift in the sex pair from a C-band positive to a negative state as compared to their corresponding somatic pattern. Comparable changes are also observed in the sex bivalents of other mammals which undergo a chiasmatic exchange. This suggests that in addition to pairing homology, an alteration in the chromatin configuration may be necessary for crossing over to occur between the sex chromosomes.  相似文献   

20.
Chromatin lacking histone H1 was found by electron microscopy to contain 'beaded' deoxyribonucleoprotein fibers. Adjacent beads are connected with each other by threads having a DNA-like appearance. At least some of threads are shown to be free DNA stretches. Average length and the content of free DNA stretches in histone H1-depleted chromatin depends on the ionic conditions of the medium. The appearance of individual beads is similar to that of chromatin subunits or v-bodies [1] in the original chromatin. Thus, in agreement with the X-ray data [2], histone H1 apparently is not required for maintenance of a compact state of DNA in chromatin subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号