首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integration protein (IN) of the Prague A strain of Rous sarcoma virus (RSV) was analyzed by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three polypeptides of similar proportions and molecular mass (32 kDa) were immunoprecipitated by an antiserum directed against the first 10 amino acids of the amino terminus of IN. However, the faster-migrating nonphosphorylated polypeptide was not immunoprecipitated by two different polyclonal antisera directed against the last 11 amino acids of the carboxyl terminus of IN. These results suggest that the faster-migrating species was proteolytically processed at its carboxyl terminus. RSV IN is phosphorylated on an S residue located five amino acids from its carboxyl terminus. Two different missense mutations at this S residue resulted in the isolation of slow-growing viable mutants whose phenotypes were stable. Each mutation at residue 282 eliminated both major phosphorylated-Ser-containing tryptic peptides observed with wild-type IN. An S----F mutation resulted in the conversion of all IN polypeptides to one species that was not precipitable by carboxyl-terminal antisera, suggesting that this amino acid transition promoted proteolysis at the carboxyl terminus. An S----D mutation resulted in the recovery of one major (greater than 95%) slower-migrating polypeptide that was immunoprecipitated by carboxyl-terminal antisera, suggesting that this negatively charged D residue (similar to phosphorylated Ser) inhibited proteolysis. Modification of the S residue at amino acid 262 to R had no apparent effect on the proteolytic processing or phosphorylation of IN.  相似文献   

2.
Chicken embryo cells (CECs) contain pyruvate kinase (PK) type M2 (M2-PK). Transformation of CECs by Rous sarcoma virus (RSV) leads to a reduction in the affinity of PK for the substrate phosphoenolpyruvate. In vitro, M2-PK can be phosphorylated at tyrosine residues by pp60v-src, the transforming protein of RSV. To study tyrosine phosphorylation of M2-PK in intact RSV-transformed cells, the protein was immunoprecipitated from 32P-labeled normal and RSV-SR-A-transformed CECs. Phosphoamino acid analysis of immunoprecipitated M2-PK revealed that M2-PK of both normal and transformed CECs contained phosphoserine and small amounts of phosphothreonine. Only M2-PK of transformed CECs contained phosphotyrosine in addition. For enzyme kinetic studies M2-PK was partially purified by chromatography upon DEAE-Sephacel and hydroxyapatite. A decreased affinity for phosphoenolpyruvate was observed 3 h after the onset of transformation using the temperature-sensitive mutant of RSV, ts-NY 68. The kinetic changes were correlated with tyrosine phosphorylation of M2-PK, but there is no direct evidence that they are caused by post-translational modification of the enzyme.  相似文献   

3.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

4.
Phosphatidylinositol kinase (E.C. 2.7.1.67) activity of rat fibroblasts transformed by Rous sarcoma virus (RSV) was measured and compared with immunoprecipitated protein tyrosine kinase activity associated with pp60v-src. Both enzyme activities were elevated in the particulate fractions from wild-type RSV-transformed cells and cells transformed by a temperature-sensitive mutant of RSV when grown at the permissive temperature. The presence of the non-ionic detergent Nonidet P-40 in the phosphatidylinositol kinase assays stimulated the soluble and particulate forms of the enzyme to different degrees but did not affect the relative differences between transformed and untransformed cells. Our results indicate that phosphatidylinositol kinase activity is a good correlate of RSV transformation and suggest a functional relationship between pp60v-src and phosphatidylinositol kinase.  相似文献   

5.
When purified p60v-src was mixed with lysates of chicken embryo fibroblasts and immunoprecipitated with anti-Src antibody, phosphatidylinositol (PI)-3 kinase activity was found to be present in the Src protein immunoprecipitates. The level of bound PI-3 kinase activity was 5 to 10 times higher in lysates obtained from cells transformed by the src, fps, or yes oncogene than in lysates of uninfected cells. This increase in associated PI-3 kinase activity appears to be due to increased binding of this enzyme to p60v-src. This change most likely resulted from tyrosine phosphorylation of PI-3 kinase or an associated protein, since the PI-3 kinase activity that can bind to p60v-src was depleted by antiphosphotyrosine antibody. Binding of PI-3 kinase did not require either p60src protein kinase activity or autophosphorylation of p60v-src tyrosine residues. Furthermore, binding was markedly decreased by deletions in the N-terminal SH2 region but unchanged by deletion of the C-terminal half of p60v-src containing the catalytic domain. Taking these data together, it appears that PI-3 kinase or its associated protein is phosphorylated on tyrosine and that the phosphorylated form can bind to the N-terminal half of p60v-src, which contains the SH2 domain.  相似文献   

6.
Morphological transformation of NIH 3T3 cells was observed following coexpression of a portion of the ras GTPase-activating protein (GAP) comprising the amino terminus (GAP-N) and a mutant of v-src (MDSRC) lacking the membrane-localizing sequence. Cells expressing either of these genes alone remained nontransformed. Coexpression of GAP-N with MDSRC did not alter the subcellular localization, kinase activity, or pattern of cellular substrates phosphorylated by the MDSRC product. In contrast to SHC, phospholipase C-gamma 1, and the p85 alpha phosphatidylinositol 3'-kinase subunit, the endogenous GAP product (p120GAP) was highly tyrosine-phosphorylated only in cells transformed by wild-type v-src. Furthermore, for transformation induced by wild-type v-src as well as by coexpression of MDSRC and GAP-N, a strict correlation was observed between cell transformation, elevated tyrosine phosphorylation of p62, p190, and a novel protein of 150 kDa, and complex formation between these proteins and p120GAP. As with cells transformed by wild-type v-src, the MDSRC plus GAP-N transformants remained dependent on endogenous Ras. The results suggest that tyrosine phosphorylation and complex formation involving p120GAP represent critical elements of cell transformation by v-src and that complementation of the cytosolic v-src mutant by GAP-N results, at least in part, from the formation of these complexes.  相似文献   

7.
A potential substrate of p60v-src in Rous sarcoma virus-transformed cells was found to be a 130-kilodalton (kDa) glycoprotein which binds to lectin-Sepharose and can be immunoprecipitated by an anti-phosphotyrosine antibody. This glycoprotein was shown to be distinct from the fibronectin receptor and a cellular protein phosphorylated in p60v-src immune complexes. The protein was a transmembrane protein localized in the plasma membrane and resistant to extraction with Triton X-100. The 130-kDa protein was also highly phosphorylated in cells transformed by Fujinami sarcoma virus or Y73 but not in cells infected with Rous sarcoma virus mutants that encode p60v-src lacking myristoylated N termini. Phosphorylation of this glycoprotein was temperature dependent in cells infected with temperature-sensitive mutants. The good correlation between its phosphorylation and morphological transformation, together with its relative abundance among phosphorylated proteins and its subcellular localization, suggests that phosphorylation of the 130-kDa glycoprotein is one of the primary events important for cell transformation by p60v-src and related oncogene products.  相似文献   

8.
A 32,000-dalton protein (p32) located in avian retrovirus cores was immunoprecipitated from [35S]methionine-labeled avian myeloblastosis virus (AMV) propagated in cultured chicken embryo fibroblast cells by an antiserum preparation (sarc III) derived from tumor-bearing hamsters injected with cloned and passaged cells from an avian sarcoma virus-induced primary hamster tumor. Since sarc III serum apparently contained antibodies only to virus-coded proteins and not to chicken cellular proteins, the immunoprecipitation of p32 from AMV by sarc III serum strongly suggested that p32 is virus coded. The origin of p32 was more definitively established by demonstrating the existence of a structural relationship between p32 and the AMV DNA polymerase. AMV p32 cross-reacted with the beta polypeptide of AMV alphabeta DNA polymerase in radioimmunoprecipitation and radioimmunoprecipitation inhibition assays, indicating that p32 and beta share common antigenic determinants. This relationship was clarified by sodium do-decyl sulfate-polyacrylamide gel electrophoretic analysis of the peptides generated by limited proteolysis of 125I-labeled AMV DNA polymerase polypeptides and of 125I-labeled AMV p32 by chymotrypsin or Staphylococcus aureus V-8 protease. The peptides which appeared during proteolytic digestion of p32 were a subset of those produced by digestion of the beta polypeptide; however, p32 had no discernible peptides in common with the alpha polypeptide. Further, all of the peptides produced by limited proteolysis of beta were present in the digests of either p32 or alpha. Our findings suggest that p32 is apparently derived by cleavage of the beta polypeptide of AMV DNA polymerase, presumably at a site near or identical to that at which alpha is generated from beta by proteolytic cleavage.  相似文献   

9.
Many oncogene products have been shown to bear strong homology to or to interact with components of normal cellular signal transduction. We have previously shown that a glycoprotein band of 95 kilodaltons (kDa) becomes tyrosine phosphorylated in chick cells transformed by Rous sarcoma virus and that tyrosine phosphorylation of this protein band correlates tightly with phenotypic transformation in cells infected with a large and diverse panel of src mutants (L. M. Kozma, A. B. Reynolds, and M. J. Weber, Mol. Cell. Biol. 10:837-841, 1990). In this communication, we report that a component of the 95-kDa glycoprotein band is related or identical to the 95-kDa beta subunit of the receptor for insulinlike growth factor I (IGF-I). We found that the beta subunit of the IGF-I receptor comigrated on polyacrylamide gels with a component of the 95-kDa glycoprotein region from src-transformed cells under both reducing and nonreducing gel conditions and had a very similar partial phosphopeptide map. To further test the hypothesis that the beta subunit of the IGF-I receptor becomes tyrosine phosphorylated in cells transformed by pp60src, a human cell line that expressed the IGF-I receptor was transformed by src. Comparison of IGF-I receptors immunoprecipitated from normal and transformed cells revealed that the beta subunit of the IGF-I receptor became constitutively tyrosine phosphorylated in src-transformed cells. Moreover, IGF-I receptor phosphorylation induced by src was synergistic with that induced by the hormone: IGF-I-stimulated autophosphorylation of the receptor was much greater in src-transformed cells than in untransformed HOS cells even at maximal concentrations of IGF-I. This increased responsiveness to IGF-I was not due to increases in receptor number, time course of phosphorylation, or affinity for hormone. Finally, no IGF-I-like activity could be detected in culture supernatants collected from the src-transformed cells, suggesting that the increased receptor phosphorylation observed in the src-transformed cells may be mediated by an intracellular mechanism rather than an external autocrine stimulation. Our data demonstrate that the IGF-I receptor becomes constitutively tyrosine phosphorylated in src-transformed cells. This finding raises the possibility that pp60v-src alters growth regulation at least in part by phosphorylating and activating this growth factor receptor.  相似文献   

10.
The incubation of intact uninfected and Rous sarcoma virus (RSV)-transformed chicken cells (SR-RSV-A) with micromolar amounts of [gamma-32P]ATP under physiological conditions resulted in the radioactive phosphorylation of a variety of proteins. According to the experimental protocol the detectable phosphorylation was restricted to ATP utilization at the cell surface and was catalyzed by surface located protein kinase (PK). Serine- and to a lesser extent, threonine residues were phosphorylated. With respect to this enzyme the cells under investigation showed upon incubation with phosvitin the release of surface (phosvitin) kinase into the incubation medium. Based on immunochemical analysis and PK-assays using antisera from RSV-tumor bearing rabbits (TBR-serum) the pp60v-src with its associated tyrosine kinase activity was likewise detected in appreciable amounts at the outside of RSV-transformed chicken and mammalian cells. There was no cross reactivity of TBR-serum with phosvitin kinase. Phosvitin was not phosphorylated by the immunoprecipitated pp60v-src. Whereas phosphorylation catalyzed by pp60v-src was blocked with 10 to 20 microM diadenosine 5',5'-P1P4 tetraphosphate (Ap4A) the phosvitin phosphorylation was far less sensitive towards inhibition by Ap4A, similar to the cellular pp60c-src kinase activity in uninfected cells. The functional significance of the PK activities in uninfected and RSV-transformed cells observed at their surface or in cell-free form as well as the nature of their substrates remain to be established.  相似文献   

11.
Chemical degradation and antipeptide antibodies were used to study alterations in the structure and function of the human placental insulin receptor following autophosphorylation in vitro. Antibodies elicited to residues 1143-1162 (P2) of the human insulin proreceptor immunoprecipitated the native, phosphorylated receptor but not the unphosphorylated receptor. Since this antibody recognizes both forms of the receptor on immunoblots, it was concluded that the accessibility of the P2 domain to the antibody is increased by in vitro autophosphorylation. Chemical cleavage at either tryptophan or methionine residues followed by immunoprecipitation with antipeptide antibodies was used to map the in vitro autophosphorylation sites of the beta subunit of the insulin receptor. Two phosphorylated fragments were resolved. One, recognized by antibody elicited to amino acid residues 1328-1343 (P5), is derived from the carboxyl terminus of the beta subunit and includes tyrosine 1316. The other, recognized by antibody to P2, is located in a domain that includes tyrosine 1150. The rate of phosphorylation of this latter site correlates with the rate of activation of the insulin receptor kinase during in vitro autophosphorylation. The results support the following conclusions: autophosphorylation alters the conformation of the beta subunit of the insulin receptor; autophosphorylation in vitro leads to phosphorylation of tyrosine residues near the carboxyl terminus of the protein and in the P2 domain that includes tyrosine 1150; activation of the insulin receptor kinase correlates with autophosphorylation of the domain containing tyrosine 1150.  相似文献   

12.
The rat somatostatin receptor subtype 2 (SSTR2) is rapidly internalized and phosphorylated in the presence of somatostatin 14 (SST14). Several C-terminal deletion constructs of SSTR2 have been investigated for their ability to undergo agonist-dependent internalization by using biochemical ligand binding assays and confocal microscopic analysis. Whereas mutant receptors lacking either 10 (delta359), 30 (delta339), or 44 (delta325) amino acid residues at the C terminus required SST14 for internalization, a construct lacking the last 20 amino acids (delta349) was detected mostly intracellularly and independently of the presence of the agonist. When internalization was blocked by sucrose, the delta349 receptor remained at the cell surface, strongly indicating that this mutant is internalized in an agonist-independent fashion. An increased affinity for agonists as measured in membrane binding assays and a reduced level of forskolin-stimulated cyclic AMP accumulation in human embryonic kidney cells expressing delta349 are properties that are characteristic of agonist-independent receptor activity. Delta349 is not phosphorylated detectably in the absence of agonist, demonstrating that phosphorylation per se is not a prerequisite for internalization of SSTR2. This observation is in line with data obtained for the delta325 mutant, which was internalized in an agonist-dependent manner, but not phosphorylated in either the presence or absence of SST14. We conclude that truncation of the SSTR2 C terminus at position 349 leads to agonist-independent, constitutive activity and internalization.  相似文献   

13.
14.
A mutant in src, the oncogene of Rous sarcoma virus, has been constructed in which the major phosphorylated tyrosine (Tyr-416, located in the carboxy-terminal half of the protein) has been replaced by phenylalanine. Mouse cells transformed with this mutant src form foci and grow in soft agar, indicative of a transformed state. Also, the mutant protein retains the wild-type ability to phosphorylate proteins on tyrosine. Partial proteolysis revealed that the carboxy-terminal half of the mutant protein was still phosphorylated, although apparently to a lesser extent. Analysis indicated that this residual phosphorylation was on tyrosine. We conclude that the major tyrosine phosphorylation in pp60v-src is not required for two of the protein's notable properties--protein kinase activity and transformation of cultured cells.  相似文献   

15.
When analyzed from transformed cell lysates, pp60v-src, the product of the Rous sarcoma virus src gene, typically appears as a single polypeptide of 60,000 molecular weight, phosphorylated at two major sites, an amino-terminal region serine residue and carboxy-terminal region tyrosine residue. We describe here the identification of variant forms of pp60v-src present in transformed cell lysates that exhibited an altered electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels. This change in migration appeared to be the result of some alteration in the amino-terminal portion of the molecule and paralleled the appearance of extensive amino-terminal region tyrosine phosphorylation on the pp60v-src molecule. These structural modifications were further correlated with a dramatic increase in the protein kinase-specific activity of pp60v-src. The detection of these variant forms of pp60v-src depended on the prior treatment of the transformed cell cultures with vanadium ions or the inclusion in the cell disruption buffer of Mg2+ or ATP-Mg2+. The implications is that modified, highly active forms of the pp60v-src protein exist in transformed cells, but are transient and rapidly converted to stable forms, possibly by specific dephosphorylation. We suggest that amino-terminal region tyrosine phosphorylation of pp60v-src, presumably the result of autophosphorylation, serves to greatly enhance src protein enzymatic activity, but that much of the regulation of this transforming protein's function may involve a phosphotyrosyl protein phosphatase.  相似文献   

16.
Rous sarcoma virus (RSV) stimulates in quail embryo neuro-retina (NR) cultures the specific activity of glutamic acid decarboxylase (GAD), the enzyme responsible for the synthesis of gamma-aminobutyric acid, a major inhibitory neurotransmitter in NR and in central nervous system. In quail embryo NR cultures transformed by ts NY-68, a thermodependent transformation-defective mutant of RSV, stimulation of GAD activity is regulated by pp60v-src, the product of the src gene of RSV. Fibroblasts and myoblasts have a very low GAD activity that is not stimulated after transformation by RSV. Neuronal clones, previously derived from ts NY-68-transformed established NR cell lines, have a high GAD activity which is regulated by pp60v-src, while other clones have a low GAD activity apparently not regulated by pp60v-src. These data indicate that pp60v-src selectively activates the expression of GAD in distinct neuronal cells of quail embryo NR cultures transformed by RSV. GAD activity is also stimulated in NR cells infected with viruses containing v-mil.  相似文献   

17.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   

18.
Oncostatin M is a polypeptide cytokine having unique structure and diverse biological activities, including the ability to inhibit growth of certain cultured tumor cells. Here we have determined the disulfide bonding pattern of recombinant oncostatin M and have used site-directed mutagenesis to identify regions of this molecule necessary for receptor binding and growth inhibitory activities. Two intramolecular disulfide bonds, C6-C127 and C49-C167, were identified in recombinant oncostatin M. Analysis of mutations at each of the five cysteines in oncostatin M indicated that mutants C49S and C167S were inactive (less than 1/10 wild type activity) in growth inhibitory assays and radioreceptor assays. Carboxyl-terminal deletion mutations terminating at S185 and beyond were active, but further shortening abolished activity in both assays. Two deletion mutants proximal to C49 (delta 22-36 and delta 44-47) and insertion mutant GAG77 also were inactive. One deletion mutant, delta 87-90, had significantly (approximately 3-fold) increased activities in both growth inhibitory assays and radioreceptor assays. A potential amphiphilic domain was identified beginning at C167 and extending toward the carboxyl terminus. Two mutants having altered hydrophobic residues within this domain (F176G and F184G) were inactive, suggesting that these residues are required for proper conformation of the receptor binding site. Taken together, these results indicate that biological activity of oncostatin M requires discontinuous regions of the molecule, including residues near the essential disulfide bond, C49-C167, and within a putative amphiphilic helix at the carboxyl terminus. Oncostatin M thus belongs to a growing family of cytokines whose interactions with their respective receptors are mediated in part by known or predicted carboxyl-terminal amphiphilic helices.  相似文献   

19.
Concerted integration of retrovirus DNA termini into the host chromosome in vivo requires specific interactions between the cis-acting attachment (att) sites at the viral termini and the viral integrase (IN) in trans. In this study, reconstruction experiments with purified avian myeloblastosis virus (AMV) IN and retrovirus-like donor substrates containing wild-type and mutant termini were performed to map the internal att DNA sequence requirements for concerted integration, here termed full-site integration. The avian retrovirus mutations were modeled after internal att site mutations studied at the in vivo level with human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). Systematic overlapping 4-bp deletions starting at nucleotide positions 7, 8, and 9 in the U3 terminus had a decreasing detrimental gradient effect on full-site integration, while more internal 4-bp deletions had little or no effect. This decreasing detrimental gradient effect was measured by the ability of mutant U3 ends to interact with wild-type U3 ends for full-site integration in trans. Modification of the highly conserved C at position 7 on the catalytic strand to either A or T resulted in the same severe decrease in full-site integration as the 4-bp deletion starting at this position. These studies suggest that nucleotide position 7 is crucial for interactions near the active site of IN for integration activity and for communication in trans between ends bound by IN for full-site integration. The ability of AMV IN to interact with internal att sequences to mediate full-site integration in vitro is similar to the internal att site requirements observed with MLV and HIV-1 in vivo and with their preintegration complexes in vitro.  相似文献   

20.
X Yu  X Yuan  M F McLane  T H Lee    M Essex 《Journal of virology》1993,67(1):213-221
In-frame stop codons were introduced into the coding region of human immunodeficiency virus type 1 (HIV-1) transmembrane protein (gp41). Truncation of 147 amino acids from the carboxyl terminus of gp41 (TM709) significantly decreased the stability and cell surface expression of the viral Env proteins, while truncation of 104 amino acids (TM752) did not. Truncation of 43 or more amino acids from the carboxyl terminus of gp41 generated mutant viruses which were noninfectious in several human CD4+ T lymphoid cell lines and fresh peripheral blood mononuclear cells. Analysis of the noninfectious mutant virions revealed significantly reduced incorporation of the Env proteins compared with the wild-type virions. Comparable amounts of Env proteins were detected on the surfaces of wild-type- and TM752-transfected cells, suggesting that the structures of gp41 required for efficient incorporation of Env proteins were disrupted in mutant TM752. Truncation of the last 12 amino acids (TM844) from the carboxyl terminus of gp41 did not significantly affect the assembly and release of virions or the incorporation of Env proteins into mature virions. However, the TM844 virus had dramatically decreased infectivity compared with the wild-type virus. This suggests that the cytoplasmic domain of gp41 also plays a role in other steps of virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号