首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The interaction of an endogenous inhibitor for the calcium-activated neutral protease (CANP or calpain EC 3.4.22.17) with CANP was examined by SDS-polyacrylamide gel electrophoresis, immunoblot analysis, and gel filtration. Fragmentation of the inhibitor (Mr 110K) by mCANP, a high-Ca2+-requiring form, was shown only in the presence of Ca2+ ions of millimolar order, with decreased inhibitor activity recovered from gel extracts in the 110-kDa area. This fragmentation took place even when the inhibitor could completely inhibit the caseinolytic activity of mCANP. The fragmented inhibitor retained considerable inhibitor activity after the CANP-inhibitor complex was dissociated by the addition of EDTA, and 69% of the initial activity was recovered from the mixture reacted with excess mCANP lacking the 110-kDa band. A C-terminal fragment of CANP inhibitor produced in Escherichia coli (Mr 40K) was also hydrolyzed by mCANP in the presence of Ca2+. The interaction of both forms of the inhibitor with mu CANP, a low-Ca2+-requiring form, led to the same phenomena in the presence of micromolar levels of Ca2+. CANP inhibitor could not completely inhibit the autolysis of mCANP and mu CANP, indicating that these were intramolecular events. Gel filtration analysis revealed that the mass of the smallest fragment with inhibitor activity was about 15,000 daltons. These results suggest that CANP inhibitor may act in the manner of a suicide substrate.  相似文献   

2.
To clarify the mechanism of activation of calcium activated neutral protease (CANP, or mCANP: active at mM Ca2+), the structure of mCANP was examined by measuring CD spectra and by titration of SH groups in the presence of Mn2+. Mn2+ significantly increases the sensitivity of CANP to Ca2+ but CANP is not active with Mn2+ alone. The structural changes induced by Mn2+ were compared with those induced by Ca2+, and the structure of muCANP, which is active at microM Ca2+, was also examined for comparison. Mn2+ and Ca2+ induced the same structural changes of CANP. However, specific activation of the active site SH group by Ca2+ was not observed with Mn2+. Six moles of calcium bound to mCANP and the average dissociation constant of Ca2+ was 150 microM. The structure of muCANP was similar to that of mCANP in terms of the CD spectra. The titration of SH groups of muCANP indicated that the structure of muCANP was looser or SH groups were more exposed than in the case of mCANP. A model which can explain the activation of mCANP is proposed and the mechanism of activation is discussed based on the proposed model. The role of Ca2+ can be explained in terms of conformational change and activation of the active-site SH group of CANP.  相似文献   

3.
Two sets of cDNA clones were isolated from cDNA libraries prepared from poly(A+) RNA of rabbit lung and spleen by screening with the cDNA probe for the large subunit (80-kDa subunit) of chicken calcium-dependent protease (Ca2+-protease; Ohno, S., Emori, Y., Imajoh, S., Kawasaki, H., Kisaragi, M., and Suzuki, K. (1984) Nature 312, 566-570). The two sets of clones were identified as cDNA clones for two Ca2+-protease isozymes with high (mu-type) and low (m-type) calcium sensitivities from a comparison of the primary structures deduced from the nucleotide sequences with partial amino acid sequences from the two isozymes. The cDNA clones for the 80-kDa subunits of the mu- and m-type Ca2+-proteases contained, in total, about 1.5- and 2.2-kilobase cDNA inserts, respectively, which correspond roughly to the C-terminal halves of the coding regions and the entire 3'-noncoding regions. The two isozymes are encoded by two distinct mRNA species present in all the tissues examined, although the amount of mRNA significantly differs among the various tissues. Four E-F hand structures, typical calcium-binding structures in various calcium-binding proteins such as calmodulin, were detected in the C-terminal regions of both isozymes, as in the case of chicken Ca2+-protease. Comparison of the amino acid sequences of the two rabbit isozymes and the corresponding region of the chicken enzyme revealed marked homology, which indicates that these three enzymes have the same evolutionary origin. Furthermore, we suggest that the mu-type rabbit Ca2+-protease, rather than the m-type, is similar to chicken Ca2+-protease, which is regarded as an m-type enzyme in the C-terminal region. The evolution and molecular basis of the differences in calcium sensitivities of the Ca2+-proteases are discussed.  相似文献   

4.
Calcium-activated neutral protease (rabbit mCANP), composed of large and small subunits, was converted to a lower-Ca2+-requiring form (derived microCANP) by limited autolysis in the presence of Ca2+. The NH2-terminal regions of the two subunits of mCANP were cleaved by autolysis, but the COOH-termini remained intact after autolysis. When native mCANP or derived microCANP was dissociated into subunits, the proteolytic activity of the large subunit was reduced to 2-5% of that of the native dimeric enzyme. The Ca2+-sensitivity of one hybrid CANP reconstituted from the large subunit of derived microCANP and the small subunit of native mCANP was similar to that of derived microCANP. However, the other hybrid molecule composed of the large subunit of native mCANP and the small subunit of derived microCANP required a high concentration of Ca2+ for activity, like native mCANP. These results indicate that the Ca2+-sensitivity of derived microCANP is determined by the structural change of the large subunit resulting from loss of its NH2-terminal region. The autolysis of the small subunit apparently has no effect on the reduction of the Ca2+-requirement.  相似文献   

5.
We have already determined the primary structure of the endogenous inhibitor for calcium-dependent protease (CANP inhibitor, calpastatin) from the cDNA sequence and revealed that the CANP inhibitor contains four internally repeating units which could be responsible for its multiple reactive sites (Emori, Y., Kawasaki, H., Imajoh, S., Imahori, K., and Suzuki, K. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3590-3594). Restriction fragments of the cDNA corresponding to each of the four domains (encoding 104-156 amino acid residues of the total 718 residues) were subcloned into the multicloning site of pUC9 or pUC18 in a direction and frame matched to the lacZ' open reading frame of the vector. Under the lac operator-promoter system, we succeeded in producing truncated fragments of the CANP inhibitor in Escherichia coli. The CANP inhibitor fragments were partially purified, and the inhibitory activities toward calcium-dependent protease (CANP) were examined. All fragments containing well conserved regions of about 30 amino acid residues (domains I-IV) located in the middle of the four units exhibited the inhibitory activity. However, their inhibitory activities varied considerably. Further truncation experiments revealed that small fragments containing 30-70 amino acid residues of the CANP inhibitor still retained inhibitory activity. From these experimental results the following conclusions can be drawn: 1) each of the four repeating units of the CANP inhibitor (about 140 amino acid residues) is a real functional unit and can inhibit CANP activity independently; and 2) domains corresponding to well conserved sequences of about 30 amino acid residues containing a consensus Thr-Ile-Pro-Pro-X-Tyr-Arg sequence are essential for the inhibitory activity, and the bordering regions are important for its modulation.  相似文献   

6.
An endogenous inhibitor of calcium-activated neutral protease (CANP), which was isolated from rabbit skeletal muscle under mild conditions, comprised high- and low-molecular-weight components. The latter (LMW-inhibitor; Mr=50,000) was purified to homogeneity by means of chromatography on DEAE-cellulose and phenyl-Sepharose CL-4B and chromatofocusing. The purified inhibitor is a protein composed of two polypeptide chains with molecular weights of 26,000 and 24,000 daltons. It contains large amounts of glutamic acid, alanine, and serine, and small amounts of aromatic amino acids. It was specific for CANPs having low (m-type) and high (mu-type) Ca2+-sensitivity, had no effect on any other protease examined (trypsin, alpha-chymotrypsin, bromelain, ficin, papain, thermolysin, etc.), and inhibited rabbit mCANP more effectively than rabbit muCANP or chicken mCANP. It was demonstrated that the inhibition is due to the formation of a stoichiometric complex between two molecules of rabbit mCANP and one inhibitor molecule.  相似文献   

7.
Since calcium-activated neutral proteinase (CANP; calpain) activation occurs at the plasmalemma and the enzyme is found in myelin, we examined myelin lipid activation of brain CANP. Purified lipids were dried, sonicated and incubated with purified myelin CANP. The CANP was assayed using [14C]azocasein as substrate and the Ca2+ concentration ranged from 2 microM for muCANP to 5 mM for mCANP. Phosphatidylinositol (PI), phosphatidylserine (PS) and dioleoylglycerol stimulated the mCANP activity by 193, 89 and 78%, respectively. PI stimulated both m- and muCANP in a concentration-dependent manner, while phosphatidylcholine was least effective. Cerebroside and sulfatide at higher concentrations (750 microM) were stimulatory. The phospholipid (PL)-mediated activation was inhibited by the PL-binding drug trifluoperazine. PI reduced the Ca2+ requirement for CANPs significantly (20-fold). These results suggest that acidic lipids and particularly acidic phospholipids activate membrane CANP.  相似文献   

8.
Some endogenous substrates were incubated with two forms of calcium-activated neutral protease (CANP) with high (muCANP) and low (mCANP) sensitivities to calcium ions. In addition to analyses of the processes of their degradation, changes in the molecular properties of these CANPs were also examined. Among the tested substrate proteins, the myosin heavy chain of rabbit skeletal muscle myofibrils and spectrin or band 3 protein of human erythrocyte membranes were degraded relatively rapidly. So far as these proteins were concerned, a higher degradation velocity was observed for muCANP than for mCANP. Vimentin from ascites tumor cells was degraded most rapidly and no difference was observed in degradation velocity between muCANP and mCANP. In all cases, muCANP and mCANP produced different proteolytic peptide fragments, suggesting the different substrate-specificities of these CANPs. The degradation of substrates always accompanied the autodigestion of CANPs, and the small subunits of both CANPs were degraded in the early stage of the autodigestion. The large subunit of muCANP (79K) was converted to a 76K polypeptide via a 77K polypeptide as an intermediate. The autodigested muCANP with 76K polypeptide retained sufficient protease activity and, moreover, its calcium-sensitivity was higher than that of intact muCANP. The possibility is thus proposed that restricted autodigestion is a necessary activation step for the appearance of activity of muCANP. No such transition was observed for mCANP.  相似文献   

9.
Two types of calcium-dependent protease with distinct calcium requirements (termed muCANP and mCANP) are known in mammalian tissues. These two isozymes consist of different large (80-kDa) subunits (mu- or m-types) and identical small (30-kDa) subunits. By screening human and rat muscle cDNA libraries with a cDNA probe for the chicken CANP large subunit, which has a structure similar to both the mammalian mu- and m-types, a cDNA clone encoding a novel member of the CANP large subunit family was obtained. The encoded protein (designated "p94") consists of 821 amino acid residues (Mr 94,084) and shows significant sequence homology with both human mu-type (54%) and m-type (51%) large subunits. p94 can be divided into four domains (I-IV) as reported for the CANP large subunit family. Domains II and IV are potential cysteine protease and calcium-binding domains, respectively, and have sequences homologous to the corresponding domains of other CANP large subunits. However, domain I of p94 is significantly different from others. Moreover, p94 contains two unique sequences of 62 and 77 residues in domains II and III, respectively. In contrast to the ubiquitous expression of mu- and m-types, Northern blot analysis revealed that the mRNA for p94 exists only in skeletal muscle with none detected in other tissues including heart muscle and smooth muscles such as intestine.  相似文献   

10.
One form of calcium-activated neutral protease (CANP) highly sensitive to calcium ions was purified by column chromatographic procedures to homogeneity. The purified enzyme required microM order Ca2+ (mu CANP), and the half-maximum activity was attained at 50 microM Ca2+. The electrophoretic mobility in a non-denaturing buffer showed that this enzyme is less acidic than another CANP which required mM order Ca2+ (mCANP). On SDS-polyacrylamide gel electrophoresis, the enzyme separated into two components with molecular weights of 79,000 and 28,000, respectively. Of these, the former was slightly larger than the counterpart of mCANP (Mr 76,000). Thus, mu CANP cannot be derived from mCANP by limited autolysis.  相似文献   

11.
Calcium-activated neutral proteases (CANPs) were purified from rabbit skeletal muscle and chicken skeletal muscle, and compared as to their electrophoretic properties, metal requirements, subunit amino acid compositions and immunological cross-reactivities. Two kinds of CANPs (mu CANP and mCANP) were isolated from rabbit but the chicken tissue lacked one corresponding to mu CANP. They were acidic in the order of chicken mCANP, rabbit mCANP, and rabbit mu CANP but the difference between the former two was very small. All of them were composed of two subunits, so-called 80K and 30K subunits. The molecular weight of the 30K subunit was the same for these CANPs (28K) but those of the 80K subunit were different (79K for rabbit mu CANP, 75K for rabbit mCANP and 81K for chicken mCANP). The calcium-sensitivity of chicken mCANP was very high when compared with that of rabbit mCANP and close to that of rabbit mu CANP. Antisera against chicken CANP and those against rabbit CANP cross-reacted with rabbit CANP and chicken CANP, respectively, when examined by immunoelectrotransfer blot techniques.  相似文献   

12.
Ca2+-Requiring proteases degrade cytosolic and integral membrane proteins as well as alter, by limited proteolysis, the activity of certain protein kinases. When cells are lysed, a Ca2+-requiring protease degrades the epidermal growth factor (EGF) receptor, an integral membrane protein with an intrinsic kinase activity, from its 170-kDa form to a 150-kDa form. This Ca2+-requiring protease has all of the characteristics of calcium-activated neutral protease (CANP). To show that CANP is the protease uniquely responsible for the degradation of the native EGF receptor in vitro, CANP was highly purified from beef lung. This affinity purified CANP had properties previously described for other CANPs: heterodimer of 80 and 30 kDa; neutral pH optimum; activation by millimolar Ca2+; and inhibition by an endogenous, heat-stable proteinaceous inhibitor, by leupeptin, and by sulfhydryl alkylating agents. Using the EGF receptor labeled by covalent attachment to 125I-EGF, this purified CANP quantitatively generated the 150-kDa form from the native receptor in A-431 cell membranes. As with the native receptor, the 150-kDa receptor forms produced by the endogenous Ca2+-requiring protease, by CANP, by chymotrypsin, and by elastase were all capable of EGF-stimulated autophosphorylation. When the 150-kDa receptor forms were generated by the three exogenously added proteases, autophosphorylation with [gamma-32P]ATP followed by trypsinization produced 32P-labeled peptides that were not the same. However, the tryptic 32P-labeled peptides from the autophosphorylated 150-kDa receptor form produced by CANP or by the endogenous Ca2+-requiring protease were identical. These data indicate that CANP is identical to the endogenous Ca2+-requiring protease responsible for producing the autophosphorylating 150-kDa receptor form from the native EGF receptor when cells are lysed.  相似文献   

13.
Ca2+-Activated neutral protease (CANP), that consists of 80K and 30K subunits, is converted to a low-Ca2+-requiring form by autolysis in the presence of Ca2+. Phosphatidylinositol greatly reduces the Ca2+-requirement for the autolysis of native CANP. However, this effect was not observed for CANP with a trimmed 30K subunit lacking the NH2-terminal hydrophobic and glycine-rich region. This suggests that the NH2-terminal hydrophobic region of the 30K subunit is important for the interaction of CANP with the cell membrane and that the calcium sensitivity of CANP is increased at the cell membrane through the effect of phosphatidylinositol.  相似文献   

14.
Two distinct calcium-dependent neutral proteases (CANPs) with different sensitivities to calcium ions were purified concurrently by almost the same procedures from rabbit skeletal muscle and their enzymatic properties were compared (sensitivity to various divalent metal ions, the pH dependency and heat-stability of the activity, and the hydrolytic activity towards various substrates). They were further compared chemically in terms of the state of thiol groups, the amino acid compositions of subunits and the peptide fragments by digestion with S. aureus V8 protease. The low calcium requiring form of CANP (microCANP) was more sensitive to other divalent metal ions such as Sr2+ and Ba2+ than the high calcium requiring form of CANP (mCANP). The comparison of the pH dependency of these CANP activities showed that microCANP was active in a broader pH range than mCANP and the former was more heat-stable than the latter. Both CANPs had similar affinity to various substrates, but the hydrolytic velocity was several times higher with microCANP than with mCANP. Although they were inhibited by thiol protease inhibitors to the same extent, the states of thiol groups in them were quite different. The thiol group involved in the catalytic activity of the enzyme was exposed without adding Ca2+ in microCANP, whereas the group in mCANP became exposed only when sufficient Ca2+ was added. The large subunits of these two CANPs were different in their amino acid compositions and in the peptide fragment patterns produced by S. aureus V8 protease but the small subunits were indistinguishable from each other. These results led us to conclude that these two CANPs are quite different in nature and are not in a simple relationship, i.e., one of them is not derived from the other by autolysis or modification.  相似文献   

15.
Fifteen hybridomas secreting antibodies against calcium-activated neutral protease (CANP), especially those for rabbit muscle mCANP with low calcium sensitivity, have been produced by the cell fusion technique. Eight of the monoclonal antibodies belong to the class IgG1, one to the class IgG2a, and six to the class IgG2b. The antibodies from these clones were characterized with regard to their relative binding affinities to the large subunits (80K) and the small subunits (30K) of mCANP as well as mu CANP, which is another type of CANP with high calcium sensitivity. Fourteen antibodies bound only to the 80K subunit of mCANP and one antibody bound to the 80K subunit of both mCANP and mu CANP. These antibodies recognized rat mCANP but not chicken CANP, with the exception of one antibody. Examination of the effects of these antibodies on the enzyme activity of mCANP showed that six antibodies partially inhibited the enzyme activity and the others were noninhibitory. These monoclonal antibodies should be useful for analyzing the fine structure of CANPs and the mechanism of the activation of mCANP, and also for determining the intracellular localization of mCANP.  相似文献   

16.
Five rabbit cDNAs, encoding four conventional protein kinase Cs (PKCs), alpha, beta I, beta II, and gamma, and a novel PKC-related protein (nPKC epsilon) were transfected into COS cells. Antisera raised against a bacterially synthesized fragment of PKC alpha or nPKC epsilon and against a chemically synthesized peptide of PKC beta I or beta II, specifically identified the corresponding species in the transfected cells. All four PKCs and nPKC epsilon expressed by transfection served as phorbol ester receptors. Phorbol 12,13-dibutyrate (PDBu)-binding activities of all PKCs and nPKC epsilon required phospholipid but not magnesium. The phosphatidylserine requirement for the activity of nPKC epsilon is independent of Ca2+ and similar to that for PKC alpha observed at 0.03 mM Ca2+. Calcium dependence of the binding activity was observed only for the four conventional PKCs. Scatchard plot analysis clearly showed that the dissociation constants of PDBu for all four PKCs were nearly the same (approximately 25 nM) in the presence of Ca2+, and that the value for nPKC epsilon was slightly higher (84 nM) and independent of Ca2+. The latter value is comparable to those observed in several cell types under conditions of Ca2+ chelation. Translocation of conventional PKC alpha to the membranes was induced with phorbol ester in a Ca2+-dependent manner, whereas the PDBu-stimulated translocation of nPKC epsilon did not require Ca2+. These results, together with previous studies on the enzymological characteristics of nPKC epsilon (Ohno, S., Akita, Y., Konno, Y., Imajoh, S., and Suzuki, K. (1988) Cell 53, 731-741), suggest that nPKC epsilon plays an important role in a transmembrane signaling pathway distinct from that involving conventional PKCs.  相似文献   

17.
High-Ca2+-requiring calcium-activated neutral protease (mCANP), a dimeric enzyme composed of large (Mr = 80,000) and small (Mr = 28,000) subunits, is resistant to carboxypeptidase Y (CPase Y) in the absence of NaSCN. In the presence of 0.2 M NaSCN, CPase Y digested mCANP, one or two amino acids being released from the COOH-termini of the large and small subunits, but no change occurred in the activity of the digested mCANP. In the presence of 1 M NaSCN, 8-10 amino acids were released from the subunits by CPase Y, and the COOH-terminal potential Ca2+-binding sites of both subunits were destroyed. On digestion under these conditions, mCANP lost the ability to form a complex, and the proteolytic activity was not recovered even when the digested subunits were mixed with native subunits. These results suggest that the COOH-terminal regions of the two subunits of mCANP, which constitute the helical portions of the COOH-terminal E-F hand structures in both subunits, are essential for the subunit association and resulting proteolytic activity.  相似文献   

18.
The binding of a calcium-activated neutral protease (CANP) with high calcium sensitivity (muCANP) to erythrocyte membranes and its subsequent autolytic activation on the membranes were analyzed by an immunoblot technique. In the presence of calcium ions, muCANP bound to the erythrocyte membranes as a heterodimer of 79- and 28-kDa subunits and was converted quickly on the membranes to an active form with a 76-kDa large subunit. The active form was then released from the membranes to the soluble fraction. These sequential reactions, however, were not specific to inside-out vesicles, but occurred also, except for some Ca2+-independent binding, on right side-out vesicles. A rapid degradation of some membrane proteins was observed after binding of muCANP to the membranes. The binding of muCANP to erythrocyte membranes was inhibited by substrates and the endogenous CANP inhibitor, which is also a suicide substrate. These results strongly suggest that muCANP binds to membranes by recognition of membrane proteins as substrates and not at a special site for activation. Thus, a possible mechanism for muCANP activation on membranes is that muCANP first binds to substrates on membranes, is activated, and then degrades the substrates to deform the membrane structures.  相似文献   

19.
Ca2+-activated neutral protease (CANP) usually requires mM Ca2+ for activation. The sensitivity of CANP to Ca2+ is greatly enhanced by passing it through a casein-Sepharose column in the presence of Ca2+ ions. This conversion is ascribed to autolysis of CANP. The converted enzyme required 40 microM Ca2+ for 50% activation. Various properties of the converted enzyme were very similar to those of CANP-I, recently found in canine heart muscle. Names of "m-CANP" and "mu-CANP" are proposed for CANPs which require mM and microM order Ca2+ for inactivation, respectively.  相似文献   

20.
1. The low-calcium-requiring form (μCANP) and the high-calcium-requiring form (mCANP) of the calcium-activated neutral proteases were purified to near homogeneity from rabbit cardiac muscle.2. Each of them was compared with the counterpart of skeletal muscle in respect to subunit composition, calcium sensitivity, pH dependency of the activity and peptide map of the fragments produced byS. aureus V8 protease digestion.3. All results suggested that mCANP and μCANP from cardiac muscle were almost indistinguishable in various properties with mCANP and μCANP of skeletal muscle, respectively, showing the lack of tissue-specificity of CANPs among these two tissues. However, the total and the relative contents of mCANP and μCANP were different among them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号