首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pretreatment of cultured human fibroblasts by cyclic AMP resulted in a marked decrease in the binding and internalization of the low density lipoproteins (about 55% of controls for cyclic AMP 2.10(-3) M). This effect was dose dependent and increased by theophyllin. DL propranolol, an inhibitor of adenylcyclase, had an opposite effect. Isoproterenol, which stimulates adenylcyclase, reproduced the effect of cyclic AMP. The cholesterol synthesis from [2-14C] acetate was decreased by cyclic AMP, theophyllin and isoproterenol, and increased by propranolol. The incorporation of [1-14C] oleate into cholesteryl esters was reduced by cyclic AMP, theophyllin, isoproterenol and propranolol.  相似文献   

2.
Comparative studies were made of the metabolism of plasma high density lipoprotein (HDL) and low density lipoprotein (LDL) by cultured normal human fibroblasts. On a molar basis, the surface binding of (125)I-HDL was only slightly less than that of (125)I-LDL, whereas the rates of internalization and degradation of (125)I-HDL were very low relative to those of (125)I-LDL. The relationships of internalization and degradation to binding suggested the presence of a saturable uptake mechanism for LDL functionally related to high-affinity binding. This was confirmed by the finding that the total uptake of (125)I-LDL (internalized plus degraded) at 5 micro g LDL protein/ml was 100-fold greater than that attributable to fluid or bulk pinocytosis, quantified with [(14)C]sucrose, and 10-fold greater than that attributable to the sum of fluid endocytosis and adsorptive endocytosis. In contrast, (125)I-HDL uptake could be almost completely accounted for by the uptake of medium during pinocytosis and by invagination of surface membrane (bearing bound lipoprotein) during pinocytosis. These findings imply that, at most, only a small fraction of bound HDL binds to the high-affinity LDL receptor and/or that HDL binding there is internalized very slowly. The rate of (125)I-HDL degradation by cultured fibroblasts (per unit cell mass) exceeded an estimate of the turnover rate of HDL in vivo, suggesting that peripheral tissues may contribute to HDL catabolism. In accordance with their differing rates of uptake and cholesterol content, LDL increased the cholesterol content of fibroblasts and selectively inhibited sterol biosynthesis, whereas HDL had neither effect.  相似文献   

3.
The transfer of free cholesterol from [3H]cholesterol-labelled plasma lipoproteins to cultured human lung fibroblasts was studied in a serum-free medium. The uptake of [3H]cholesterol depended upon time of incubation, concentration of lipoprotein in the medium, and temperature. Modified (reduced and methylated) low-density lipoprotein (LDL), which did not enter the cells by the receptor pathway, gave a somewhat lower transfer rate than unmodified LDL, but if the transfer values for native LDL were corrected for the receptor-mediated uptake of cholesterol the difference was eliminated. The initial rates of transfer of [3H]cholesterol from LDL and high-density lipoprotein (HDL) were of the same order of magnitude (0.67 +/- 0.05 and 0.75 +/- 0.06 nmol of cholesterol/h per mg of cell protein, respectively) while that from very-low-density lipoprotein (VLDL) was much lower (0.23 +/- 0.02 nmol of cholesterol/h per mg) (means +/- S.D., n = 5). The activation energy for transfer of cholesterol from reduced, methylated LDL to fibroblasts was determined to be 57.5 kJ/mol. If albumin was added to the incubation medium the transfer of [3H]cholesterol was enhanced, while that of [14C]dipalmitoyl phosphatidylcholine was decreased compared with the protein-free system. The results demonstrate that, in spite of its low water solubility, free cholesterol can move from lipoproteins to cellular membranes, probably by aqueous diffusion. We propose that physicochemical transfer of free cholesterol may be a significant mechanism for net uptake of the sterol into the artery during atherogenesis.  相似文献   

4.
We have previously shown that the liver and steroidogenic tissues of rats in vivo and a wider range of cells in vitro, including human cells, selectively take up high density lipoprotein (HDL) cholesteryl esters without parallel uptake of HDL particles. This process is regulated in tissues of rats and in cultured rat cells according to their cholesterol status. In the present study, we examined regulation of HDL selective uptake in cultured human fibroblasts and Hep G2 hepatoma cells. The cholesterol content of these cells was modified by a 20-hr incubation with either low density lipoprotein (LDL) or free cholesterol. Uptake of HDL components was examined in a subsequent 4-6-hr assay using intracellularly trapped tracers: 125I-labeled N-methyl-tyramine-cellobiose-apoA-I (125I-NMTC-apoA-I) to trace apoA-I, and [3H]cholesteryl oleyl ether to trace cholesteryl esters. In the case of fibroblasts, pretreatment with either LDL or free cholesterol resulted in decreased selective uptake (total [3H]cholesteryl ether uptake minus that due to particle uptake as measured by 125I-NMTC-apoA-I). In contrast, HDL particle uptake increased with either form of cholesterol loading. The amount of HDL that was reversibly cell-associated (bound) was increased by prior exposure to free cholesterol, but was decreased by prior exposure to LDL. In the case of Hep G2 cells, exposure to free cholesterol only slightly increased HDL particle uptake; selective uptake decreased after both forms of cholesterol loading, and reversibly bound HDL increased after exposure to free cholesterol, but either did not change or decreased after exposure to LDL. It was excluded that either LDL carried over into the HDL uptake assay or that products secreted by the cultured cells influenced these results. Thus, selective uptake by cells of both hepatic and extrahepatic origin was down-regulated by cholesterol loading, under which conditions HDL particle uptake increased. Total HDL binding was not directly correlated with either the rate of selective uptake or the rate of HDL particle uptake or the cholesterol status of the cells, suggesting more than one type of HDL binding site.  相似文献   

5.
High affinity cell surface receptors for low density lipoproteins (LDL) are inducible in cultured human lung fibroblasts by the removal of lipoproteins from the cell culture medium. The binding, uptake, and degradation of 125I-LDL by fibroblasts decrease with increasing number of population doublings. The affinity of LDL receptor binding, however, remained unchanged at different population doublings levels. Hence, the difference in LDL binding activity in the aging fibroblasts can be attributed to a reduction in the number of receptor sites on the cell membrane. Cellular uptake of [4-14C]cholesterol and 2-deoxy-D-[1-14C]glucose mediated through mechanisms independent of the LDL receptor pathway revealed no significant difference in early and late passage fibroblasts. This suggests that the alteration in the LDL receptor binding in serially passaged fibroblasts is an "age-related" phenomenon. The late population doubling fibroblasts require more LDL in the culture medium for feedback inhibition of LDL receptor synthesis. Thus, aging fibroblasts are both progressively less inducible and less suppressible in the regulation of their cell membrane LDL receptors. Similar results were also obtained with respect to the regulation of DL-3-hydroxy-3-methyl-glutaryl coenzyme A reductase in the aging fibroblasts in culture; the enzyme has become less inducible and less supressible as the fibroblasts approach the limit of their in vitro lifespan. These age-related alterations in the cellular metabolism of LDL and cholesterol might contribute to our understanding of the increased risk of athlerosclerosis in our aging population.  相似文献   

6.
The relationship between cholesterol synthesis and uptake in proliferating lymphocytes has been examined. [14C]Acetate incorporation into lymphocytes cultured under lipoprotein-deficient conditions increased initially in response to mitogen, decreased after 24 h, and increased rapidly between 72 and 96 h. Addition of LDL (10 micrograms/ml) to the culture during the 'trough' period caused [14C]acetate incorporation to return rapidly to baseline, while at peak periods LDL suppression of cholesterol synthesis was minimal. Lymphocytes cultured in the presence of the HMG-CoA reductase inhibitor, mevinolin, exhibited a time-dependent increase in their capacity to incorporate [14C]acetate into cholesterol, evident when mevinolin was removed by washing prior to assay. PHA enhanced 125I-labelled LDL receptor-mediated binding by lymphocytes cultured in lipoprotein-deficient medium over a 4 day period and mevinolin augmented the effect. [3H]Thymidine incorporation into mitogen-stimulated lipoprotein-deficient cultures was inhibited up to 75% by mevinolin (1 mumol/l). LDL (2.5-10 micrograms/ml) substantially reversed this inhibition in 72 h cultures, but only partially overcame inhibition in cells cultured for 96 h. Results suggest that endogenous cholesterol synthesis may be obligatory for lymphocyte proliferation after the initial round of cell division.  相似文献   

7.
Serum lipoproteins control cell cholesterol content by regulating its uptake, biosynthesis, and excretion. Monolayers of cultured fibroblasts were used to study interactions with human high density (HDL) and low density (LDL) lipoproteins doubly labeled with [(3)H]cholesterol and (125)I in the apoprotein moiety. In the binding assay for LDL, the absence of specific LDL receptors in type II hypercholesterolemic fibroblasts was confirmed, whereas monolayers of virus-transformed human lung fibroblasts (VA-4) exhibited LDL binding characteristics essentially the same as normal lung fibroblasts. In the studies of HDL binding, specific HDL binding sites were demonstrated in normal and virus-transformed fibroblasts. In addition, type II hypercholesterolemic cells, despite the loss of LDL receptors, retained normal HDL binding sites. No significant competition was displayed between the two lipoprotein classes for their respective binding sites over a 5-fold concentration range. In VA-4 cells, the amount of lipoprotein required to saturate half the receptor sites was 3.5 micro g/ml (9 x 10(-9) M) for LDL and 9.1 micro g/ml (9 x 10(-8) M) for HDL. Pronase treatment reduced LDL binding by more than half but had no effect on HDL binding. Chloroquine, a lysomal enzyme inhibitor, stimulated net LDL uptake 3.5-fold by increasing internalized LDL but had essentially no effect on HDL uptake. Further experiments were conducted using doubly labeled lipoproteins to characterize the interaction of LDL and HDL with cells. While the cholesterol and protein moieties of LDL were incorporated into cells at similar rates, the uptake of the cholesterol moiety of HDL was 5 to 10 times more rapid than that of the protein component. Furthermore, the apoprotein component of LDL is extensively degraded following exposure, whereas the apoprotein moiety of HDL retains its macromolecular chromatographic characteristics. These results indicate that HDL and LDL bind to cultured cells at separate sites and that further processing of the two lipoprotein classes appears to take place by fundamentally different mechanisms.-Wu, J-D., J. Butler, and J. M. Bailey. Lipid metabolism in cultured cells XVIII. Comparative uptake of low density and high density lipoproteins by normal, hypercholesterolemic, and tumor virus-transformed human fibroblasts.  相似文献   

8.
The cyclic AMP metabolism of cultured epithelial cells was investigated. Epinephrine or 1-methyl,3-isobutylxanthine (MIX) alone had no effect on cyclic AMP levels in intact cells, whereas the combination of the two agents yielded a 6- to 10-fold increase in cyclic AMP levels. Both basal and stimulated cyclic AMP levels decreased with increasing cell density. Cell-free adenylate cyclase preparations were stimulated markedly by epinephrine or isoproterenol in the absence of MIX. Since the epithelial cells were found to have a relatively small amount of cyclic nucleotide phosphodiesterase (PDE) activity, the requirement for MIX to visualize intact cell responsiveness to epinephrine could be explained only partially by its PDE inhibitory properties.  相似文献   

9.
Receptor-mediated binding and metabolism of low-density lipoproteins (LDL) in cultured human vascular smooth-muscle cells and skin fibroblasts are altered by increased cellular cyclic AMP concentrations. However, the LDL receptor does not respond to changes in cyclic AMP concentration in a simple manner. The activation of adenylate cyclase with forskolin, or the addition of membrane-permeant cyclic AMP analogues, initially decreases the expression of the LDL receptor, but is followed by a substantial increase in receptor expression after 24 h. This increase does not occur in the presence of inhibitors of RNA or protein synthesis, and is due to doubling of the Bmax. of the LDL receptor, without alteration of its affinity for LDL. By contrast, elevation of cyclic AMP concentration by inhibition of phosphodiesterases results in decreased receptor expression throughout the 24 h period. These two response patterns are reproducible phenomena, consistently observed in low-passaged cells derived from seven unrelated individuals.  相似文献   

10.
The intracellular accumulation of unesterified cholesterol was examined during 24 h of low density lipoprotein (LDL) uptake in normal and Niemann-Pick C fibroblasts by fluorescence microscopy with filipin staining and immunocytochemistry. Perinuclear fluorescence derived from filipin-sterol complexes was observed in both normal and mutant cells by 2 h. This perinuclear cholesterol staining reached its peak in normal cells at 6 h. Subsequent development of fluorescence during the remaining 18 h of LDL incubation was primarily limited to the plasma membrane region of normal cells. In contrast, mutant cells developed a much more intense perinuclear fluorescence throughout the entire 24 h of LDL uptake with little enhancement of cholesterol fluorescence staining in the plasma membranes. Direct mass measurements confirmed that internalized LDL cholesterol more readily replenishes the plasma membrane cholesterol of normal than of mutant fibroblasts. Perinuclear filipin-cholesterol fluorescence of both normal and mutant cells was colocalized with lysosomes by indirect immunocytochemical staining of lysosomal membrane protein. Abnormal sequestration of LDL cholesterol in mutant cells within a metabolically latent pool is supported by the finding that in vitro esterification of cellular cholesterol could be stimulated in mutant but not in normal cell homogenates by extensive disruption of the intracellular membranous structures of cells previously cultured with LDL. Deficient translocation of exogenously derived cholesterol from lysosomes to other intracellular membrane sites may be responsible for the delayed homeostatic responses associated with LDL uptake by mutant Niemann-Pick Type C fibroblasts.  相似文献   

11.
Steroidogenic cells utilize lipoprotein-delivered cholesterol as a primary substrate for hormone synthesis. We studied low density lipoprotein (LDL) receptors in cultured human granulosa cells to determine what factors regulate receptor expression. Granulosa cells cultured under serum-free conditions were treated with human chorionic gonadotropin (hCG) for 1.5 to 14 hr. The LDL receptor content of cells increased by approximately twofold within 6 hr of hCG treatment, and the content continued to increase for at least 14 hr, as determined by immunoblotting. The rate of LDL receptor synthesis was also demonstrated to increase within 2.5 to 3.5 hr of hCG treatment by immunoisolation of LDL receptor from cells metabolically labeled with a pulse of [35S]methionine. The cyclic AMP analogue, 8-bromo-cAMP, was also found to increase LDL receptor synthesis. This increased rate of synthesis was shown to be dependent on ongoing RNA synthesis, since actinomycin D abolished hCG- or 8-bromo-cAMP-stimulated LDL receptor synthesis. We also demonstrated that hCG- and 8-bromo-cAMP-mediated regulation of LDL receptor synthesis in granulosa cells supersedes the classical cholesterol-mediated regulation of the receptor described in fibroblasts. Although 25-hydroxycholesterol induced a decrease in LDL receptor content and synthesis within 6 hr, this action was overridden by simultaneous exposure to hCG. Our findings demonstrate the existence of a novel cAMP-mediated mechanism for regulation of LDL receptor synthesis in steroidogenic cells.  相似文献   

12.
Summary The cyclic AMP metabolism of cultured epithelial cells was investigated. Epinephrine or 1-methyl, 3-isobutylxanthine (MIX) alone had no effect on cyclic AMP levels in intact cells, whereas the combination of the two agents yielded a 6- to 10-fold increase in cyclic AMP levels. Both basal and stimulated cyclic AMP levels decreased with increasing cell density. Cell-free adenylate cyclase preparations were stimulated markedly by epinephrine or isoproterenol in the absence of MIX. Since the epithelial cells were found to have a relatively small amount of cyclic nucleotide phosphodiesterase (PDE) activity, the requirement for MIX to visualize intact cell responsiveness to epinephrine could be explained only partially by its PDE inhibitory properties. This study was supported in part by Grant PDT-16B, American Cancer Society.  相似文献   

13.
The profoundly elevated concentrations of low-density lipoproteins (LDL) present in homozygous familial hypercholesterolemia lead to symptomatic cardiovascular disease and death by early adulthood. Studies conducted in nonhepatic tissues demonstrated defective cellular recognition and metabolism of LDL in these patients. Since mammalian liver removes at least half of the LDL in the circulation, the metabolism of LDL by cultured hepatocytes isolated from familial hypercholesterolemic homozygotes was compared to hepatocytes from normal individuals. Fibroblast studies demonstrated that the familial hypercholesterolemic subjects studied were LDL receptor-negative (less than 1% normal receptor activity) and LDL receptor-defective (18% normal receptor activity). Cholesterol-depleted hepatocytes from normal subjects bound and internalized 125I-labeled LDL (Bmax = 2.2 micrograms LDL/mg cell protein). Preincubation of normal hepatocytes with 200 micrograms/ml LDL reduced binding and internalization by approx. 40%. In contrast, 125I-labeled LDL binding and internalization by receptor-negative familial hypercholesterolemic hepatocytes was unaffected by cholesterol loading and considerably lower than normal. This residual LDL uptake could not be ascribed to fluid phase endocytosis as determined by [14C]sucrose uptake. The residual LDL binding by familial hypercholesterolemia hepatocytes led to a small increase in hepatocyte cholesterol content which was relatively ineffective in reducing hepatocyte 3-hydroxy-3-methylglutaryl-CoA reductase activity. Receptor-defective familial hypercholesterolemia hepatocytes retained some degree of regulatable 125I-labeled LDL uptake, but LDL uptake did not lead to normal hepatocyte cholesterol content or 3-hydroxy-3-methylglutaryl-CoA reductase activity. These combined results indicate that the LDL receptor abnormality present in familial hypercholesterolemia fibroblasts reflects deranged hepatocyte LDL recognition and metabolism. In addition, a low-affinity, nonsaturable uptake process for LDL is present in human liver which does not efficiently modulate hepatocyte cholesterol content or synthesis.  相似文献   

14.
Effect of hormones on cyclic AMP levels in cultured human cells.   总被引:1,自引:0,他引:1  
Cultured cells derived from human adipose tissue grew more slowly and had significantly higher basal levels of cyclic AMP than cultured fibroblasts. Cyclic AMP levels in cultured adipose tissue cells were unaffected by epinephrine and were elevated 15-fold by prostaglandin E1 while fibroblast cyclic AMP levels were elevated 27-fold by epinephrine and 95-fold by prostaglandin E1. These results support the postulate that the cultured adipose tissue cell is a distinct cell type which may represent an adipocyte or preadipocyte in culture.  相似文献   

15.
A 24 h pretreatment of MRC5 fibroblasts with the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA) induced a marked decrease in low density lipoprotein (LDL) internalization and degradation; the maximal effect (about 55% decrease) was observed for 10(-7) M TPA. LDL binding was reduced about 35-40%. A significant decrease (about 25%) in LDL internalization was observed after a 2 h incubation of cells with the drug, but longer incubation times (4-6 h) led to a greater effect. Another tumor promoter, phorbol 12,13-dibutyrate decreased LDL internalization by about 35%, whereas the non-tumor promoting 4 alpha-phorbol 12,13-didecanoate had no effect. The protein kinase C inhibitor alpha-cobrotoxin partially antagonized the inhibitory effect of TPA on LDL internalization. The non-phorbol tumor promoter mezerein, another protein kinase C activator, decreased LDL uptake by about 50%. Finally, it was found that TPA had no significant effect on the affinity of the receptor for the LDL. These results suggest a role for protein kinase C in the LDL pathway in cultured human fibroblasts.  相似文献   

16.
The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.  相似文献   

17.
Control of ovarian cholesterol ester biosynthesis   总被引:2,自引:1,他引:1  
1. Experimental evidence is presented for a role of progesterone and 20alpha-hydroxypregn-4-en-3-one as inhibitors of cholesterol ester synthetase in the acute depletion of ovarian cholesterol ester after trophic stimulation. 2. Luteinizing hormone in vitro decreased by 84% the rate of esterification of cholesterol with added [(14)C]oleate by slices of rabbit ovarian interstitial tissue; this effect was mimicked by cyclic AMP (adenosine 3':5'-cyclic monophosphate) in vitro, and occurred without large changes in precursor pool sizes or membrane permeability. 3. Cyclic AMP was shown to have no direct effect on cholesterol ester synthetase or cholesterol esterase in cell-free extracts of rabbit ovarian interstitial tissue, but decreased the activity of cholesterol ester synthetase (not that of cholesterol esterase) in extracts prepared from slices previously incubated with it. 4. The inhibitory effect of cyclic AMP on esterification of cholesterol with added [(14)C]-oleate was prevented by both cycloheximide and aminoglutethimide phosphate (which also inhibited steroid synthesis in response to cyclic AMP). 5. Cyclic AMP raised the intracellular concentrations of progesterone and 20alpha-hydroxypregn-4-en-3-one in incubated slices by factors of 2.8 and 3.9 respectively. 6. Cycloheximide and aminoglutethimide phosphate administered in vivo blocked cholesterol ester depletion in response to luteinizing hormone in rats; in these ovaries cycloheximide and aminoglutethimide phosphate decreased the concentrations of progesterone and 20alpha-hydroxypregn-4-en-3-one and luteinizing hormone raised them. 7. Progesterone and 20alpha-hydroxypregn-4-en-3-one added to cell-free extracts of rabbit ovarian interstitial tissue in vitro (at concentrations comparable with those found in incubated slices) inhibited cholesterol ester synthetase by up to 85%. 8. The results are discussed with reference to the acute control of cholesterol ester concentrations in the ovary and adrenal cortex.  相似文献   

18.
The role of cyclic nucleotides in regulating acid secretion by dispersed mucosal cells from guinea-pig stomach was examined by measuring first the ability of histamine and carbachol to stimulate [dimethylamine-14C]aminopyrine uptake and cyclic nucleotide metabolism and secondly, the effect of exogenous cyclic nucleotides on basal and stimulated [14C]aminopyrine uptake. The [14C]aminopyrine was found in an acidic, osmotically sensitive compartment, probably associated with the initial steps in acid secretion by these cells. Although histamine increased [14C]aminopyrine uptake and cyclic AMP synthesis as expected, histamine was approx. 10-fold more potent in inducing [14C]aminopyrine uptake. This dissociation of [14C]aminopyrine uptake and cyclic AMP metabolism process was further manifested by the observation that prostaglandin E1 failed to increase [14C]aminopyrine uptake, although it did cause a rise in cellular cyclic AMP. Furthermore, prostaglandin E1 did not alter the [14C]-aminopyrine uptake caused by histamine. Carbachol was found to increase the [14C]aminopyrine uptake and also to potentiate the ability of histamine to increase [14C]aminopyrine uptake. Carbachol, however, affected neither the histamine-induced increase in cyclic AMP nor the binding of [3H]histamine to the cells. Cimetidine, a histamine H2 receptor antagonist, blocked the [14C]aminopyrine uptake induced either by histamine alone or by the potentiating combination of histamine plus carbachol. These results suggest that cyclic AMP is mediating the action of histamine on [14C]aminopyrine uptake but changes in cyclic AMP per se are not necessarily the cause for the potentiated increase in [14C]aminopyrine uptake. Furthermore, the potentiated response observed with histamine plus carbachol on [14C]aminopyrine uptake occurs at a biochemical step distal to and not obviously related to cyclic AMP generation.  相似文献   

19.
On incubation of peritoneal macrophages with antibody-coated radiolabeled erythrocytes, a reproducible fraction of the erythrocytes was phagocytized and heme oxygenase was induced. Addition of cyclic AMP, dbcyclic AMP, or theophylline to the incubation medium suppressed the substrate-mediated induction of heme oxygenase in a dose-related manner but did not impair the rate or extent of erythrophagocytosis. A similar effect was produced by epinephrine, norepinephrine, isoproterenol, and prostaglandins, which generate endogenous cyclic AMP by stimulating the adenyl cyclase system. Propanolol completely blocked the suppressive effect of epinephrine, while phentolamine was ineffective. In contrast to the cyclic adenosine nucleotide, cyclic GMP probably slightly enhanced the substrate-mediated induction of heme oxygenase and partly reversed the suppressive effect of cyclic AMP. Cyclic adenosine nucleotides, prostaglandin, and theophylline significantly reduced the incorporation of labeled uridine or leucine into RNA and protein of erythrophagocytic macrophages, but failed to impair the uptake of these precursors by the phagocytizing cells. These compounds also reduced the conversion of [1-14C] glucose to 14CO2 by the incubated macrophages, whereas 14CO2 formation was enhanced by epinephrine. None of these effects was reversible by addition of insulin or by glucose supplementation, which is in sharp contrast to the suppressive effect of glucocorticoids on heme oxygenase induction.  相似文献   

20.
Studies of low density lipoprotein (LDL) metabolism in nonhuman model systems have indicated that the mammalian liver has dual mechanisms for the uptake and regulation of the concentration of plasma LDL. Heretofore, direct evaluation of lipoprotein uptake mechanisms in human hepatocytes has not been possible. In order to compare hepatocyte LDL uptake with fibroblast LDL metabolism, human hepatocytes were isolated and cultured from small biopsy specimens obtained from normolipidemic and homozygous familial hypercholesterolemic patients. Cells cultured in serum-free culture medium retained the morphological and biochemical characteristics of hepatocytes for at least 7 days. The uptake and degradation of LDL by hepatocytes was compared to that of the cultured human fibroblasts. Like fibroblasts, hepatocytes bound, internalized, and degraded LDL. In both cell types, uptake approached saturation at a concentration of 50 micrograms of LDL protein/ml. Competition for LDL binding by LDL, high density lipoprotein, and modified LD revealed that the hepatocyte binding was specific for LDL. Cellular cholesterol loading by incubation in LDL-enriched culture medium resulted in diminished LDL uptake in both cell types. Chemical modification of LDL by acetoacetylation, acetylation, and reductive methylation abolished LDL uptake and degradation by fibroblasts. However, hepatocytes bound and degraded the modified LDL at 30-50% the level of native LDL. Homozygous familial hypercholesterolemic hepatocytes were devoid of the LDL receptor pathway but metabolized native LDL to the extent observed with modified LDL uptake by normal hepatocytes. In contrast to the classic LDL receptor pathway, the second or alternate pathway does not lead to regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity. These findings indicate the presence of two separate pathways of LDL uptake in human hepatocytes which have different effects on hepatocytic cholesterol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号