首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Removal of chromium from industrial waste by using eucalyptus bark   总被引:6,自引:0,他引:6  
Several low cost biomaterials such as baggase, charred rice husk, activated charcoal and eucalyptus bark (EB) were tested for removal of chromium. All the experiments were carried out in batch process with laboratory prepared samples and wastewater obtained from metal finishing section of auto ancillary unit. The adsorbent, which had highest chromium(VI) removal was EB. Influences of chromium concentration, pH, contact time on removal of chromium from effluent was investigated. The adsorption data were fitted well by Freundlich isotherm. The kinetic data were analyzed by using a first order Lagergren kinetic. The Gibbs free energy was obtained for each system and was found to be -1.879 kJ mol(-1) for Cr(VI) and -3.885 kJ mol(-1) for Cr(III) for removal from industrial effluent. The negative value of deltaG0 indicates the feasibility and spontaneous nature of adsorption. The maximum removal of Cr(VI) was observed at pH 2. Adsorption capacity was found to be 45 mg/g of adsorbent, at Cr(VI) concentration in the effluent being 250 mg/l. A waste water sample containing Cr(VI), Cr(III), Mg, and Ca obtained from industrial unit showed satisfactory removal of chromium. The results indicate that eucalyptus bark can be used for the removal of chromium.  相似文献   

2.
ABSTRACT

Microbial waste biomass, a by-product of the fermentation industry, was developed as a biosorbent to remove hexavalent chromium (Cr) from the acidic effluent of a metal processing industry. In batch sorption, 100% Cr(VI) removal was achieved from aqueous solution in 30 min contact at pH 4.0–5.0. The Cr(VI) sorption equilibrium was evaluated using the Langmuir and Freundlich models, indicating the involvement of ion exchange and physicochemical interaction. Fourier transform infrared (FTIR) analysis revealed the presence of amine, hydroxyl, and imine functional groups present on the surface of microbial biomass that are involved in Cr binding. In a continuous sorption system, 95 mg L?1 of Cr(VI) was adsorbed before the column reached a breakthrough point of 0.1 mg L?1 Cr(VI) at the column outlet. An overall biosorption capacity of 12.6 mg Cr(VI) g?1 of dry microbial waste was achieved, including the partially saturated portion of the dynamic sorption zone. Insignificant change in metal removal was observed up to 10 cycles. In pilot-scale studies, 100% removal of Cr(VI) was observed up to 5 weeks, and the method was found to be cost-effective, commercially viable, and environmentally friendly, as it does not generate toxic chrome sludge.  相似文献   

3.
The enthalpy change accompanying the reversible acid-induced transition from the native (N) to the molten-globule (MG) state of bovine cytochrome c was directly evaluated by isothermal acid-titration calorimetry (IATC), a new method for evaluating the pH dependence of protein enthalpy. The enthalpy change was 30 kJ/mol at 30 degrees C, pH 3.54, with 500 mM KCl. The results of the global analysis of the temperature dependence of the excess enthalpy from 20 to 35 degrees C demonstrated that the N to MG transition is a two-state transition with a small heat capacity change of 1.1 kJ K(-1) mol(-1). The present findings were also indicative of the pH dependence of the enthalpy and the heat capacity of the MG state, -13 kJ mol(-1) pH(-1) and -1.0 kJ K(-1) mol(-1) pH(-1), respectively, at 30 degrees C within a pH range from 2 to 3.  相似文献   

4.
The use of palm kernel fibre, a readily available agricultural waste product for the sorption of Methylene blue from aqueous solution and the possible mechanism of sorption has been investigated at various fibre doses. The extent of dye removal and the rate of sorption were analyzed using two kinetic rate models (pseudo-first and pseudo-second-order kinetic models) and two diffusion models (intraparticle and external mass transfer models).

Analysis of the kinetic data at different sorbent dose revealed that the pseudo-first order kinetics fitted to the kinetic data only in the first 5 min of sorption and then deviated from the experimental data. The pseudo-second-order kinetic model was found to better fit the experimental data with high correlation coefficients at the various fibre dose used. The dye sorption was confirmed to follow the pseudo-second-order model by investigating the relationship between the amount of dye sorbed and the change in hydrogen ion concentration of the dye solution and also the dependence of dye uptake with solution temperature. It was found that the change in hydrogen ion concentration and increase in sorption temperature were directly related to the amount of dye sorbed, and activation energy was calculated to be −39.57 kJ/mol, indicating that the dye uptake is chemisorption, involving valence forces through sharing or exchange of electrons between sorbent and sorbate as covalent forces.

The intraparticle diffusion plots showed three sections indicating that intraparticle diffusion is not solely rate controlling. The intraparticle diffusion and mass transfer rate constants where observed to be well correlated with sorbent dose in the first 5 min of sorption, indicating sorption process is complex. It was found that at low sorbent dose the mass transfer is the main rate controlling parameter. However at high sorbent dose, intraparticle diffusion becomes rate controlling.  相似文献   


5.
The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.  相似文献   

6.
Kinetics for the breakdown of the trinuclear chromium acetate cluster, [Cr(3)O(OAc)(6)](+), with a series of monoprotic and diprotic ligands in weakly acidic aqueous media (pH approximately 4 or approximately 5) have been investigated spectrophotometrically at 40-60 degrees C. The results point to an ion-pair equilibrium as the first step followed by associative interchange mechanism forming the mononuclear product of the reaction. Pseudo-first-order rates were determined from absorbance data and associated activation parameters were calculated using the Eyring equation. Enthalpy and entropy terms of the reactions (e.g., histidine, DeltaH(double dagger) = 75 +/- 15 kJ mol(-1), DeltaS(double dagger) = -130 +/- 25 J K(-1) mol(-1); lactic acid, DeltaH(double dagger) = 66 +/- 13 kJ mol(-1), DeltaS(double dagger) = -155 +/- 30 J K(-1) mol(-1); glycine, DeltaH(double dagger) = 31 +/- 6 kJ mol(-1), DeltaS(double dagger) = -225 +/- 45 J K(-1) mol(-1)) are consistent with an associative interchange (I(a)) mechanism, and produce a linear isokinetic plot (slope = 50 degrees C). Rates and activation parameters are comparable to those of substitution reactions of the chromium(III) hexaaqua cation. Other ligands studied included malonic acid and the amino acid, aspartic acid. Observed rates are faster than water exchange rates, but typically slower than anion substitution rates, and indicate that trinuclear chromium(III) clusters are expected to be kinetically stable in neutral to slightly acidic conditions.  相似文献   

7.
The effect of pH and temperature on the thermal denaturation of micrococcal nuclease wer4e investigated. The ranges employed were between pH3.30 and pH9.70 and between 10 degrees C and 85 degrees C, respectively. The reversible denaturation involved in the whole process was clearly discriminated from the irreversible one. The former took place with a large enthalpy change of 384 kJ mol(-1) at pH 9.70, where the enzyme exhibited it s maximum activity. The latter probably led to aggregation because the successive long incubation after complete deactivation caused precipitation. A reasonable scheme explaining the process involving both denaturations was proposed and the kinetic on the irreversible deactivation was performed. It was revealed that the irreversible deactivation involved two types of reactions whose activation energies were relatively small: 22.2 kJ mol(-1) and 18.8kJ mol(-1). The presence of sucrose suppressed the reversible denaturation without significant influence on enthalpy change, whereas it affected little the irreversible deactivation kinetically. The effects of pH change and addition of sucrose on the denaturation were discussed thermodynamically, especially in terms of the entropy change. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
Abstract

The removal of hexavalent chromium from aqueous solution using grape stalks wastes encapsulated in calcium alginate (GS–CA) beads was investigated. Cr(VI) sorption kinetics were evaluated as a function of chromium initial concentration and grape stalks (GS) content in the calcium alginate (CA) beads. The process follows pseudo second-order kinetics. Transport properties of hexavalent chromium on GS–CA beads was characterised by calculating chromium diffusion coefficient using the Linear Absorption Model (LAM). Langmuir isotherms, at pH 3.0 were used to describe sorption equilibrium data as a function of GS percentage in the CAbeads. Maximum uptake obtained was 86.42 mmol of Cr(VI) per L of wet sorbent volume. Results indicated that both kinetic and equilibrium models describe adequately the adsorption process.  相似文献   

9.
Sorption of zinc and lead on coir   总被引:2,自引:0,他引:2  
Pilot tests have shown that coir (fibres from Coco nucifera) is suitable as a metal ion sorbent. Batch sorption experiments were carried out with Zn and Pb to quantify the sorption kinetics, the pH dependence of the sorption, sorption isotherms at pH 3.0 and pH 5.6, and desorption. Unground and unmodified coir was used and the metal concentrations ranged between 0 and 0.015 mM (1000 microg/l) for Zn and 0 and 9.7 x 10(-4) M (200 microg/l) for Pb. The pH maximum was 4.5 (91%) for Zn and 2.5 (97%) for Pb. Pb had a higher sorption affinity than Zn, and the affinity was higher at pH 5.6 than at pH 3.0. The isotherms could be represented by the Freundlich, but not by the Langmuir models in the concentration range tested. Desorption experiments demonstrated that less than 1% and 13% of the sorbed Pb and Zn, respectively, could be desorbed at pH 5.6 during 2h.  相似文献   

10.
In the present study, adsorption of Cr(III) and Cr(VI) on Pumice (Pmc), Yarikkaya (YK) brown coal, Chelex-100, and Lewatit MP 62 is examined at room temperature and at initial chromium concentration of 1.0 x 10(-3) mol/L. Column method was carried out as a function of pH, concentration of Cr(III) and Cr(VI) ions, volume of samples and flow rate. The experimental data were evaluated by Freundlich and Langmuir isotherm models. The dynamic breakthrough capacities of the adsorbents for Cr(III) and Cr(VI) were calculated. The maximum chromium sorption occurred at 5 mL/min flow rate and 25 mL volume for all adsorbents. The results showed that the two readily available adsorbents namely Pmc and YK, were suitable for removing chromium from aqueous solution.  相似文献   

11.
Batch and continuous culture laboratory-scale experiments were conducted to quantify the effect of combining chrome and nickel electroplating effluent (EE) and brewery effluent as substrate for established anaerobic digester granules. EE at a 1:12 ratio in brewery effluent was inhibitory to anaerobic digestion but acclimation at a 1:24 ratio occurred during continuous culture experiments. At least 90% of the chromium and nickel was absorbed by the granules with nickel attaching to granule perimeters while chromium penetrated into deeper recesses. © Rapid Science Ltd. 1998  相似文献   

12.
Treatment of landfill leachate using blast furnace slag and pine bark as reactive sorbents was studied in an in situ column experiment at the Lilla Nyby landfill site in Eskilstuna, Sweden. The columns were filled with approximately 101 of each sorbent and leachate was supplied at three different flow rates during a period of 4 months. Samples of inflow and outflow were collected three times a week and were analyzed for physical and chemical parameters, including concentrations of some metals, and toxicity. It was found that pine bark removed metals more efficiently than did the blast furnace slags; that Zn was most efficiently retained in the filters and that both retention time and initial concentration played an important role in the sorption process. It was also observed that the pine bark column did not release COD. No toxicity of the untreated or the treated leachate was found with the test organisms and test responses used.  相似文献   

13.
The biosorption of zinc from model solution as well as wastewater by Arthrospira (Spirulina) platensis biomass was studied. Adsorption capacity of the biosorbent was investigated as a function of contact time between adsorbent and zinc, the initial metals and sorbent concentration, pH value, and temperature. The ability of Arthrospira biomass for zinc biosorption exhibited a maximum at the pH range 4–8. Equilibrium data fitted well with the Langmuir model as well as the Freundlich model with maximum adsorption capacity of 7.1 mg/g. The pseudo second-order model was found to correlate well with the experimental data. Different thermodynamic parameters, ΔG°, ΔH° and ΔS° were evaluated and it has been found that the sorption was feasible, spontaneous, and endothermic in nature. The process of zinc removal from industrial effluent was studied at different time of sorbat–sorbent interaction and different sorbent dosage. Maximum zinc removal (83%) was obtained at sorbent concentration 60 g/L during 1-h experiment. The results indicate that Arthrospira platensis biomass could be effectively used for zinc removal from industrial effluents.  相似文献   

14.
Phytoremediation is an efficient method for the removal of heavy metals from contaminated systems. A productive disposal of metal accumulating plants is a major concern in current scenario. In this work, Cr(VI) accumulating Tradescantia pallida plant parts were investigated for its reuse as a biosorbent for the removal of Cr(VI) ions. The effect of pH, contact time, sorbent dosage, Cr(VI) concentration and temperature was examined to optimize these process parameters. Results showed that Cr(VI) exposed/unexposed T. pallida leaf biomass could remove 94% of chromium with a sorption capacity of 64.672 mg g?1. Whereas the kinetics of Cr(VI) biosorption was well explained by the pseudo second-order kinetic model, the Langmuir model better described the data on Cr(VI) sorption isotherm compared with the Freundlich model. The changes in the free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were found to be ?5.276 kJ mol?1, 0.391 kJ mol?1 K?1 and 11.346 kJ mol?1, respectively, which indicated the process to be spontaneous, feasible and endothermic in nature. FTIR spectra of T. pallida leaf biomass revealed the active participation of ligands, such as ?NH, amide, hydroxyl and sulphonate groups present in the biomass for Cr(VI) binding, SEM analysis revealed a porous structure of the biosorbent for an easy uptake of Cr(VI).  相似文献   

15.
Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.  相似文献   

16.
The 1,044 bp endo-1,4-β-xylanase gene of a hyperthermophilic Eubacterium, "Thermotoga petrophila RKU 1" (T. petrophila) was amplified, from the genomic DNA of donor bacterium, cloned and expressed in mesophilic host E. coli strain BL21 Codon plus. The extracellular target protein was purified by heat treatment followed by anion and cation exchange column chromatography. The purified enzyme appeared as a single band, corresponding to molecular mass of 40 kDa, upon SDS-PAGE. The pH and temperature profile showed that enzyme was maximally active at 6.0 and 95 °C, respectively against birchwood xylan as a substrate (2,600 U/mg). The enzyme also exhibited marked activity towards beech wood xylan (1,655 U/mg). However minor activity against CMC (61 U/mg) and β-Glucan barley (21 U/mg) was observed. No activity against Avicel, Starch, Laminarin and Whatman filter paper 42 was observed. The K(m), V(max) and K (cat) of the recombinant enzyme were found to be 3.5 mg ml(-1), 2778 μmol mg(-1)min(-1) and 2,137,346.15 s(-1), respectively against birchwood xylan as a substrate. The recombinant enzyme was found very stable and exhibited half life (t(?)) of 54.5 min even at temperature as high as 96 °C, with enthalpy of denaturation (ΔH*(D)), free energy of denaturation (ΔG*(D)) and entropy of denaturation (ΔS*(D)) of 513.23 kJ mol(-1), 104.42 kJ mol(-1) and 1.10 kJ mol(-1)K(-1), respectively at 96 °C. Further the enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) for birchwood xylan hydrolysis by recombinant endo-1,4-β-xylanase were calculated at 95 °C as 62.45 kJ mol(-1), 46.18 kJ mol(-1) and 44.2 J mol(-1) K(-1), respectively.  相似文献   

17.
The P2 primary alkylsulphohydrolase of the soil bacterium Pseudomonas C12B was purified to homogeneity (200-250-fold) by column chromatography on DEAE-cellulose, Sephadex G-100 and butyl-agarose. The intact protein is a dimer with a mol. wt. of 160 000. Activity towards primary alkyl sulphate esters was maximal at pH 8.3, varied little in the range pH 7.8-8.7, but decreased sharply at higher pH. For a homologous series of primary alkyl sulphate substrates (C6-C12), logKm decreased linearly with increasing chain length, corresponding to a contribution to the free energy of association between enzyme and substrate of -2.5kJ/mol for each additional CH2 group in the alkyl chain. logKi for the competitive inhibition by secondary alkyl 2-sulphate esters followed a similar pattern (-2.4kJ/mol for each additional CH2 group) except that only n-1 carbon atoms effectively participate in hydrophobic bonding, implying that the C-1 methyl group is not involved. logKi values for inhibition primary alkanesulphonates also depended linearly on chain length but with a diminished gradient, indicating a free-energy increment of -1.2kJ/mol per additional CH2 group. The collective results showed the presence of a hydrophobic site on the enzyme capable of accomodating an alkyl chain of considerable length. Cationic structures (in the form of arginine, lysine or histidine), whose presence might be expected for binding the anionic sulphate group, were not detectable at the active site.  相似文献   

18.
The thermodynamics of the conversion of aqueous D-psicose to D-allose has been investigated using high-pressure liquid chromatography. The reaction was carried out in phosphate buffer at pH 7.4 over the temperature range 317.25-349.25 K. The following results are obtained for the conversion process at 298.15 K: DeltaG degrees = - 1.41 +/- 0.09 kJ mol(-1), DeltaH degrees = 7.42 +/- 1.7 kJ mol(-1), and DeltaC(p) degrees = 67 +/- 50 J mol(-1) K(-1). An approximate equilibrium constant of 0.30 is obtained at 333.15 K for the conversion of aqueous D-psicose to D-altrose. Available thermodynamic data for isomerization reactions involving aldohexoses and aldopentoses are summarized.  相似文献   

19.
Comparative studies on the adsorption of Cr(VI) ions on to various sorbents   总被引:2,自引:0,他引:2  
The adsorption of Cr(VI) ions onto various sorbents (chitin, chitosan, ion exchangers; Purolite CT-275 (Purolite I), Purolite MN-500 (Purolite II) and Amberlite XAD-7) was investigated. Batch adsorption experiments were carried out as a function of pH, agitation period and concentration of Cr(VI) ions. The optimum pH for Cr(VI) adsorption was found as 3.0 for chitin and chitosan. The Cr(VI) uptake by ion exchangers was not very sensitive to changes in the pH of the adsorption medium. The maximum chromium sorption occurred at approximately 50 min for chitin, 40 min for Purolite II and 30 min for chitosan, Purolite I and Amberlite XAD-7. The suitability of the Freundlich and Langmuir adsorption models were also investigated for each chromium-sorbent system. Adsorption isothermal data could be accurately interpreted by the Langmuir equation for chitosan, chitin, Purolite I and Purolite II and by the Freundlich equation for chitosan, chitin and Amberlite XAD-7. The chromium(VI) ions could be removed from the sorbents rapidly by treatment with an aqueous EDTA solution and at the same time the sorbent regenerated and also could be used again to adsorb by heavy metal ions. The results showed that, chitosan, which is a readily available, economic sorbent, was found suitable for removing chromium from aqueous solution.  相似文献   

20.
The thermodynamics of the conversion of aqueous L-aspartic acid to fumaric acid and ammonia have been investigated using both heat conduction microcalorimetry and high-pressure liquid chromatography. The reaction was carried out in aqueous phosphate buffer over the pH range 7.25-7.43, the temperature range 13-43 degrees C, and at ionic strengths varying from 0.066 to 0.366 mol kg(-1). The following values have been found for the conversion of aqueous L-aspartateH- to fumarate2- and NH4+ at 25 degrees C and at zero ionic strength: K = (1.48 +/- 0.10) x 10(-3), DeltaG degrees = 16.15 +/- 0.16 kJ mol(-1), DeltaH degrees = 24.5 +/- 1.0 kJ mol(-1), and DeltaC(p) degrees = -147 +/- 100 J mol(-1) K(-1). Calculations have also been performed which give values of the apparent equilibrium constant for the conversion of L-aspartic acid to fumaric acid and ammonia as a function of temperature, pH and ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号