首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
浙江天童国家森林公园景观的遥感分类与制图   总被引:3,自引:0,他引:3  
利用Landsat-TM多时相数据,采用非监督分类方法,对浙江省天童国家森林公园的景观进行分类。并利用野外实地调查的数据进行检验和校正。结果表明,天童国家森林公园范围内的景观可分为常绿阔叶林、成熟常绿阔叶林、次生常绿-落叶阔叶林、山脊常绿-落叶阔叶林、谷地常绿-落叶阔叶林、林缘灌丛、次生灌丛、针叶林(杉木)、竹林、生长作物的农田/菜园地、旱地、裸土、居住区、水体14个类型,这14个景观类型,根据植物群落学分类的群落复合体(cammunity complex)和群落复合体的地-综合群落学(Geo-synsociology)的方法,归并为山坡常绿阔叶林、常绿落叶阔叶混交林、人工林(针叶林、竹林)、农田、水体、居住区6个景观单元。在景观分类和合并的基础上,对天童国家森林公园的景观进行了制图。  相似文献   

2.
ABSTRACT

Mediterranean landscapes are characterized by high stability to fire since regeneration of pre-existing spatial relationships among distinctive vegetation patches is quite rapid. The aim of this paper is to introduce a method based on percolation theory to quantitatively estimate structural variations in remotely sensed biomass data linked to post-fire dynamics of Mediterranean vegetation. The ability of the proposed method to estimate fire-induced variations in Mediterranean vegetation patterns made it appropriate to the monitoring of post five vegetation regrowth in Mediterranean landscapes at the Landsat TM scale.  相似文献   

3.
森林生态系统生物物理参数遥感反演研究进展   总被引:8,自引:2,他引:8  
论述了利用遥感技术反演推算森林生态系统主要生物物理参数:叶面积指数、吸收光合有效辐射、净第一性生产力和生物量的技术、方法和模型及各个参量之间的相互关系研究进展,阐述了各研究方法、模型的特点、优势及局限性。特别论述了净第一性生产力的森林冠层光合作用理论模型基础、微波遥感估算森林生物量的应用优势和理论模型,展示了遥感技术在森林生态学研究中广阔的应用前景,同时也指出现有研究中各生物物理参数的定量遥感估算还有待进一步深入研究。  相似文献   

4.
5.
Mapping the biomass of Bornean tropical rain forest from remotely sensed data   总被引:10,自引:0,他引:10  
The biomass and biomass dynamics of forests are major uncertainties in our understanding of tropical environments. Remote sensing is often the only practical means of acquiring information on forest biomass but has not always been used successfully. Here the conventional approaches to the estimation of forest biomass from remotely sensed data were evaluated relative to techniques based on the application of artificial neural networks. Together these approaches were used to estimate and map the biomass of tropical forests in north‐eastern Borneo from Landsat TM data. The neural networks were found to be particularly suited to the application. A basic multi‐layer perceptron network, for example, provided estimates of biomass that were strongly correlated with those measured in the field (r = 0.80). Moreover, these estimates were more strongly correlated with biomass than those derived from 230 conventional vegetation indices, including the widely used normalized difference vegetation index (NDVI).  相似文献   

6.
Aims Remote sensing technology has been proved useful in mapping grassland vegetation properties. Spectral features of vegetation cover can be recorded by optical sensors on board of different platforms. With increasing popularity of applying unmanned aerial vehicle (UAV) to mapping plant cover, the study aims to investigate the possible applications and potential issues related to mapping leaf area index (LAI) through integration of remote sensing imagery collected by multiple sensors.  相似文献   

7.
Episodes of forest mortality have been observed worldwide associated with climate change, impacting species composition and ecosystem services such as water resources and carbon sequestration. Yet our ability to predict forest mortality remains limited, especially across large scales. Time series of satellite imagery has been used to document ecosystem resilience globally, but it is not clear how well remotely sensed resilience can inform the prediction of forest mortality across continental, multi-biome scales. Here, we leverage forest inventories across the continental United States to systematically assess the potential of ecosystem resilience derived using different data sets and methods to predict forest mortality. We found high resilience was associated with low mortality in eastern forests but was associated with high mortality in western regions. The unexpected resilience–mortality relation in western United States may be due to several factors including plant trait acclimation, insect population dynamics, or resource competition. Overall, our results not only supported the opportunity to use remotely sensed ecosystem resilience to predict forest mortality but also highlighted that ecological factors may have crucial influences because they can reverse the sign of the resilience–mortality relationships.  相似文献   

8.
Remotely sensed data – available at medium to high resolution across global spatial and temporal scales – are a valuable resource for ecologists. In particular, products from NASA's MODerate‐resolution Imaging Spectroradiometer (MODIS), providing twice‐daily global coverage, have been widely used for ecological applications. We present MODISTools, an R package designed to improve the accessing, downloading, and processing of remotely sensed MODIS data. MODISTools automates the process of data downloading and processing from any number of locations, time periods, and MODIS products. This automation reduces the risk of human error, and the researcher effort required compared to manual per‐location downloads. The package will be particularly useful for ecological studies that include multiple sites, such as meta‐analyses, observation networks, and globally distributed experiments. We give examples of the simple, reproducible workflow that MODISTools provides and of the checks that are carried out in the process. The end product is in a format that is amenable to statistical modeling. We analyzed the relationship between species richness across multiple higher taxa observed at 526 sites in temperate forests and vegetation indices, measures of aboveground net primary productivity. We downloaded MODIS derived vegetation index time series for each location where the species richness had been sampled, and summarized the data into three measures: maximum time‐series value, temporal mean, and temporal variability. On average, species richness covaried positively with our vegetation index measures. Different higher taxa show different positive relationships with vegetation indices. Models had high R2 values, suggesting higher taxon identity and a gradient of vegetation index together explain most of the variation in species richness in our data. MODISTools can be used on Windows, Mac, and Linux platforms, and is available from CRAN and GitHub ( https://github.com/seantuck12/MODISTools ).  相似文献   

9.
将遥感与作物模型耦合有利于提高作物模型在区域尺度应用时的精度。基于集合平方根滤波算法(Ensemble Square RootFilter,EnSRF)和粒子群优化算法(Particle Swarm Optimization,PSO),以叶面积指数(Leaf Area Index,LAI)和叶片氮积累量(Leaf Nitrogen Accumulation,LNA)共同作为同化耦合点和过程更新点,将同化与更新策略相结合,研究建立了基于遥感信息与水稻生长模型(RiceGrow)耦合的水稻生长与产量预测技术。结果表明,将更新和同化策略结合后,利用RiceGrow模型模拟的水稻生长指标和产量结果更接近于实测值。其中LAI、LNA和产量与实测值间的RMSE分别为0.94、0.47 g/m2和320.15 kg/hm2;RiceGrow模型直接模拟LAI、LNA和产量的RMSE为1.25、1.24 g/m2和516.83 kg/hm2;而单纯基于同化策略模拟LAI、LNA和产量的RMSE为1.01、0.59 g/m2和335.70 kg/hm2。此外,基于该技术的模型区域尺度预测结果能较好地描述水稻生长和产量的时空分布状况,生长指标及区域总产量的模拟相对误差均小于20%。显示基于更新和同化策略相结合的遥感与模型耦合技术具有较高的预测精度,从而为区域尺度作物生长和产量预测提供了技术支撑。  相似文献   

10.
Gaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above‐ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in situ observations at 100 m spatial resolution to evaluate AGB estimated by nine dynamic global vegetation models (DGVMs). The global total forest AGB of the nine DGVMs is 365 ± 66 Pg C, the spread corresponding to the standard deviation between models, compared to 275 Pg C with an uncertainty of ~13.5% from GlobBiomass. Model‐data discrepancy in total forest AGB can be attributed to their discrepancies in the AGB density and/or forest area. While DGVMs represent the global spatial gradients of AGB density reasonably well, they only have modest ability to reproduce the regional spatial gradients of AGB density at scales below 1000 km. The 95th percentile of AGB density (AGB95) in tropics can be considered as the potential maximum of AGB density which can be reached for a given annual precipitation. GlobBiomass data show local deficits of AGB density compared to the AGB95, particularly in transitional and/or wet regions in tropics. We hypothesize that local human disturbances cause more AGB density deficits from GlobBiomass than from DGVMs, which rarely represent human disturbances. We then analyse empirical relationships between AGB density deficits and forest cover changes, population density, burned areas and livestock density. Regression analysis indicated that more than 40% of the spatial variance of AGB density deficits in South America and Africa can be explained; in Southeast Asia, these factors explain only ~25%. This result suggests TRENDY v6 DGVMs tend to underestimate biomass loss from diverse and widespread anthropogenic disturbances, and as a result overestimate turnover time in AGB.  相似文献   

11.
Biodiversity in tropical rainforests is heavily influenced by land use/cover change (LUCC), but so far there have been few LUCC studies conducted in Africa. We present several methods that make use of remotely sensed data and landscape metrics and allow for assessment of the development of land cover and thus forest fragmentation and disturbance over a substantial period of time. The study covers Kakamega Forest and its associated forest areas in western Kenya, over the last 30 years. The accuracy of a supervised multispectral classification of Landsat time series data encompassing seven time steps between 1972 and 2001 is numerically assessed using ground truth reference data considering the 2001 time step. Here, buffering the forest areas by 1 km, highest user's accuracies for the forest classes ‘near natural + old secondary forest’ (87.50%), ‘secondary forest’ (80.00%) and ‘bushland/shrubs’ (81.08%) are revealed. Images of a spatially distributed fragmentation index derived from the land cover time series by applying a three by 3 pixel‐sized moving window to determine forest pixels’ adjacency, highlight trends in forest fragmentation, e.g. the splitting into two separate forests along the Yala/Ikuywa corridor. Calculations of mean fragmentation indices for the Biodiversity Monitoring Transect Analysis in Eastern Africa (BIOTA‐East Africa) focus research areas are used to evaluate the fragmentation index and to demonstrate its potential to extrapolate (e.g. biological) field findings in space and time. Here we argue for a correlation of the fragmentation indices results not only with forest management regimes, but with population distribution and accessibility (e.g. by roads). A cluster analysis applying the isodata‐algorithm on the classification results of all seven times steps allows for a rapid visual assessment of the distinct pattern of typical land cover development trends since 1972. This reveals that parts of Kakamega Forest have experienced severe forest loss while others, especially in the north‐east, show signs of succession.  相似文献   

12.
基于多光谱影像的森林树种识别及其空间尺度响应   总被引:1,自引:0,他引:1  
当前,不同空间分辨率卫星影像对森林类型识别结果中普遍存在的尺度效应,而且纹理参量对不同尺度下树种识别精度的影响仍缺乏广泛认知.本研究以中国东北旺业甸林场为研究区,采用观测时相同步、地理坐标匹配的GF-1 PMS、GF-2 PMS、GF-1 WFV,以及Landsat-8 OLI卫星传感器数据组成空间尺度观测序列(1、2、4、8、16、30 m),并结合支持向量机(SVM)模型,探讨了区域内5种优势树种遥感识别结果的尺度变化规律及其纹理特征参数的影响,同时检验了基于尺度上推转换影像的树种识别结果差异.结果表明: 影像空间分辨率对区域树种识别结果具有显著影响,其中,研究区森林树种识别的最佳影像分辨率为4 m,当分辨率降低至30 m时,树种识别结果最差.在1~8 m影像分辨率范围内,增加纹理信息能够显著提高不同优势树种的识别精度,使总分类精度提升了2.0%~3.6%,但纹理信息对16~30 m影像的识别结果没有显著影响.与真实尺度卫星影像相比,基于升尺度转换影像的树种识别结果及其尺度响应特征存在显著差异,表明在面向多个空间尺度的遥感观测和应用研究中,需要采用真实分辨率影像以确保结果的准确性.  相似文献   

13.
植被叶面积指数遥感反演的尺度效应及空间变异性   总被引:9,自引:1,他引:9  
陈健  倪绍祥  李静静  吴彤 《生态学报》2006,26(5):1502-1508
遥感作为宏观生态学研究中数据获取的一种便捷手段,有助于把握较大尺度内生态学现象的特征.应用遥感数据反演LAI时,由于像元的异质性,不同尺度遥感数据之间的转换是遥感发展的一个重要问题.以河北省黄骅市为研究区,在利用TM和MODIS遥感数据对芦苇LAI反演误差产生原因进行分析的基础上,利用半变异函数对像元空间异质性进行了定量描述.发现NDVI算法的非线性带给LAI尺度转换的误差很小,而LAI的空间异质性则是引起LAI尺度效应的根本原因.并且当像元内空间异质性很大时半变异函数的基台值比纯像元要大得多,空间自相关的程度是引起LAI尺度转换误差的主要原因;反之,像元内空间异质性不大时,随机误差是引起LAI尺度转换误差的主要原因.当像元为纯像元时,由像元异质性引起的反演误差基本可以忽略.此外,研究区芦苇的空间相关有效尺度约为360m,超过此距离空间相关性则不复存在.  相似文献   

14.
15.
Aim Inventorying plant species in an area based on randomly placed quadrats can be quite inefficient. The aim of this paper is to test whether plant species richness can be inventoried more efficiently by means of a spectrally‐based ordering of sites to be sampled. Location The study area was a complex wetland ecosystem, the Lake Montepulciano Nature Reserve, central Italy. This is one of the most important wetland areas of central Italy because of the diverse plant communities and the seasonal avifauna. Methods Field sampling, based on a random stratified sampling design, was performed in June 2002. Plant species composition was recorded within sampling units of 100 m2 (plots) and 1 ha (macroplots). A QuickBird multispectral image of the same date was acquired and corrected both geometrically and radiometrically. Species accumulation curves based on spectral information were obtained by ordering sites to be sampled according to a maximum spectral distance criterion (i.e. by ordering sampling units based on the maximum distances among them in a four‐dimensional spectral space derived from the remotely sensed data). Different distance measures based on mean and maximum spectral distances among sampling units were tested. The performance of the species accumulation curve derived by the spectrally‐based ordering of sampling units was tested against a rarefaction curve obtained from the mean of 10,000 accumulation curves based on randomly ordered sampling units. Results The spectrally‐derived curve based on the maximum spectral distance among sampling units showed the most rapid accumulation of species, well above the rarefaction curve, at both the plot and the macroplot scales. Other ordering criteria of sampling units captured less richness over most of the species accumulation curves at both the spatial scales. The accumulation curves based on other measurements of distance were much closer to the random curve and did not show differences with respect to the species rarefaction curve based on random ordering of sampling units. Main conclusions The present investigation demonstrated that spectral‐based ordering of sites to be sampled can lead to the maximization of the efficiency of plant species inventories, an activity usually driven by the ‘botanist's internal algorithm’ (intuition), without any formalized rule to drive field sampling. The proposed approach can reduce costs of plant species inventorying through a more efficient allotment of time and sampling.  相似文献   

16.
17.
The availability of suitable habitat is a key predictor of the changing status of biodiversity. Quantifying habitat availability over large spatial scales is, however, challenging. Although remote sensing techniques have high spatial coverage, there is uncertainty associated with these estimates due to errors in classification. Alternatively, the extent of habitats can be estimated from ground‐based field survey. Financial and logistical constraints mean that on‐the‐ground surveys have much lower coverage, but they can produce much higher quality estimates of habitat extent in the areas that are surveyed. Here, we demonstrate a new combined model which uses both types of data to produce unified national estimates of the extent of four key habitats across Great Britain based on Countryside Survey and Land Cover Map. This approach considers that the true proportion of habitat per km2 (Zi) is unobserved, but both ground survey and remote sensing can be used to estimate Zi. The model allows the relationship between remote sensing data and Zi to be spatially biased while ground survey is assumed to be unbiased. Taking a statistical model‐based approach to integrating field survey and remote sensing data allows for information on bias and precision to be captured and propagated such that estimates produced and parameters estimated are robust and interpretable. A simulation study shows that the combined model should perform best when error in the ground survey data is low. We use repeat surveys to parameterize the variance of ground survey data and demonstrate that error in this data source is small. The model produced revised national estimates of broadleaved woodland, arable land, bog, and fen, marsh and swamp extent across Britain in 2007.  相似文献   

18.
Despite the importance of the recruitment process for small pelagic fish and the high economic importance of European sardine (Sardina pilchardus, Walbaum 1792) in the Mediterranean Sea, knowledge on the distribution and environmental characteristics of its nursery grounds is very limited. In the present study, we used pelagic trawl data collected during 1995–2006 to explore the spatial distribution of sardine juveniles in the Aegean Sea in early summer. Based on sardine abundance per length class, a cluster analysis was initially used to define hauls dominated by juveniles. In a subsequent step, Discriminant Function Analysis (DFA) was applied to discriminate stations with high relative abundance of juveniles using satellite environmental data and bottom depth. The parameters contributing mostly to the discrimination of juvenile grounds were sea level anomaly, photosynthetically active radiation, sea surface temperature, chlorophyll-α and bottom depth. The classification functions of DFA were finally used to post classify unsampled areas in the Greek Seas and the Mediterranean Sea in order to map grounds that meet characteristic environmental conditions for young sardine. Such areas were mostly located inshore, in semi-closed productive areas and often in proximity to river mouths, a pattern that is generally supported by existing information. Guest editor: V. D. Valavanis Essential Fish Habitat Mapping in the Mediterranean  相似文献   

19.
Abstract. A spatially linked version of a forest gap model, ZELIG, parameterized for the H. J. Andrews Experimental Forest, Oregon, was used to generate structural properties (i.e. biomass, leaf area, and maximum tree height) of young (80 yr), mature (140 yr), and old-growth (450 yr) Pseudotsuga menziesii (Douglas fir) forests. Semivariograms were produced at 10 and 30 m resolution to describe the spatio-temporal patterns of variation of the simulated structural features along a 5 km transect of contiguous 10 m x 10 m grid cells. These semivariograms from the simulations were compared with semivariograms from matrices of pixel digital values obtained from aerial videography of similarly aged stands. Although autocorrelative spatial patterning was absent from both the remotely sensed imagery (except at < 20 m for the 450 yr stand) and the model output, the pixel-to-pixel and plot-to-plot variances exhibited similar patterns across the chronosequence at both resolutions. This suggests that gap models are able to capture temporal aspects of landscape dynamics associated with canopy texture of Pacific Northwest forests.  相似文献   

20.
彭羽  王越  马江文  范敏  白岚  周涛 《生态学报》2019,39(13):4883-4891
植物群落物种多样性的快速无损估测一直是近几十年生态学领域的热点研究问题。相对于大尺度的卫星遥感数据,高光谱遥感数据具有光谱和空间分辨率高的优势。采用ASD HH2便携式高光谱仪,收集浑善达克沙地中部120个样方的高光谱数据,并对样方的alpha多样性指数进行同步测定。对高光谱遥感数据进行预处理,采用相关性分析、主成分分析和经验波段筛选法,从数百个波段中选择敏感波段。采用90个样方的高光谱数据作为训练样本,对筛选的敏感波段进行多元线性逐步回归分析,获得12个回归模型。采用另外30个样方的高光谱数据作为验证样本,对回归模型的拟合效果进行检验。结果发现,采用主成分分析法提取敏感波段的回归模型拟合效果最好,Pielou指数、Shannon-Wiener指数和Simpson指数拟合均达到显著水平。对我国植物物种多样性微尺度的快速评估和高光谱遥感具有一定参考意义,并对未来植物多样性高光谱遥感研究提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号