首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dimeric porin from Paracoccus denitrificans.   总被引:5,自引:3,他引:2       下载免费PDF全文
Paracoccus denitrificans was shown to contain a 33,000-dalton porin, which produced pores of large (1.6 to 1.8 nm) diameter. Cross-linking studies showed that the porin existed as dimers in the outer membrane.  相似文献   

2.
Cytochrome c1 from Paracoccus denitrificans   总被引:3,自引:0,他引:3  
Cytochrome c1 was purified from the bacterium Paracoccus denitrificans. It is an acidic, hydrophobic polypeptide with an apparent molecular weight of around 65000 and a single, covalently attached heme; it cross-reacts immunologically with cytochrome c1 from yeast mitochondria. The amino acid sequence of the tryptic heme peptide of the bacterial cytochrome c1 shows extensive homology to the corresponding region of beef heart cytochrome c1 [Wakabayashi, S. et al. (1982) J. Biol. Chem. 257, 9335-9344]. Positive evidence for a stable association of the Paracoccus cytochrome c1 with other polypeptides and b-type heme components ('bc1-complex') has not yet been obtained.  相似文献   

3.
4.
Paracoccus denitrificans grows on methanol as the sole source of energy and carbon, which it assimilates aerobically via the reductive pentose phosphate cycle. This gram-negative bacterium grew rapidly on 50 mM methanol (generation time, 7 h, 30 degrees C) in excellent yield (3 g of wet-packed cells per liter of culture). Electron microscopic studies indicated that the late-log-phase cells were coccoid, having a thick envelope surrounding a layer of more diffuse electron-dense material and a relatively electron-transparent core. Ribulose bisphosphate carboxylase in the 15,000 X g supernatant of fresh cells had specific activities (micromoles of CO2 fixed per minute per milligram of protein) of 0.026, 0.049, 0.085, 0.128, and 0.034 during the lag, early, mild-, and late log, and late stationary phases, respectively. The enzyme was purified 40-fold by pelleting at 159,000 X g, salting out, sedimentation into a 0.2 to 0.8 M linear sucrose gradient, and elution from a diethylaminoethyl-Sephadex column. The enzyme was homogeneous by the criteria of electrophoresis on polyacrylamide gels polymerized from several acrylamide concentrations and sedimentation behavior. The molecular weight of the native enzyme, as measured by gel electrophoresis and gel filtration, averaged 525,000. Sodium dodecyl sulfate dissociated the enzyme into two types of subunits with molecular weights of 55,000 and 13,600. The S20,w of the enzyme was 14.0 Km values for ribulose bisphosphate and CO2 were 0.166 and 0.051 mM, respectively, and the enzyme was inhibited to the extent of 94% by 1 mM 6-phosphogluconate.  相似文献   

5.
Genetics of Paracoccus denitrificans   总被引:5,自引:0,他引:5  
Abstract In bioenergetic research Paracoccus denitrificans has been used as an interesting model to elucidate the mechanisms of bacterial energy transduction. Genes for protein complexes of the respiratory chain and for proteins which are involved in periplasmic electron transport have been cloned and sequenced. Conjugational gene transfer has allowed the construction of site-specific mutant strains. Complementation experiments did not only open the field for site-directed mutagenesis and investigation of the structure/function relationship of the various electron-transport proteins, but also allowed first insights into processes like oxygen-dependent gene regulation or the assembly of electron-transport complexes. Also data will be presented that characterize two restriction-/modification systems, the codon usage and the promoter sequences of Paracoccus . Details will be given about the extrachromosomal localization of a duplicated cytochrome oxidase subunit I gene on one of the Paracoccus megaplasmids.  相似文献   

6.
A novel prenyltransferase from Paracoccus denitrificans.   总被引:1,自引:0,他引:1  
K Ishii  H Sagami    K Ogura 《The Biochemical journal》1986,233(3):773-777
A new polyprenyltransferase catalysing the formation of Z-double bonds was found and partially purified from extracts of Paracoccus denitrificans. The enzyme catalysed a consecutive condensation of isopentenyl diphosphate with EE-farnesyl diphosphate as a primer to produce EE-farnesyl-all-Z-hexaprenyl diphosphate (ZE-mixed nonaprenyl diphosphate) as the final product. Not only EE-farnesyl diphosphate but also neryl diphosphate, ZE-farnesyl diphosphate, ZEE-geranylgeranyl diphosphate and ZZEE-pentaprenyl diphosphate were all accepted as substrates. This polyprenyltransferase required detergent such as Triton X-100 for its catalytic activity. The formation of ZE-mixed undecaprenyl diphosphate, which is well known as the precursor of the bacterial sugar-carrier lipid, was not detected in extracts of this bacterium.  相似文献   

7.
Turnover of cytochrome c oxidase from Paracoccus denitrificans   总被引:2,自引:0,他引:2  
The heme aa3 type cytochrome oxidase from Paracoccus denitrificans incorporated into vesicles with phospholipid reacts during turnover much as the oxidase from mitochondria does. The spectrophotometric changes observed at various wavelengths are closely similar, and the rate is about one-half of that for beef heart oxidase under the same conditions. The rate of appearance of oxidized cytochrome c on initiation of the reaction is also similar and depends on the previous treatment of the oxidase as described by Antonini, E., Brunori, M., Colosimo, A., Greenwood, C. and Wilson, M. T. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3128-3132. In terms of their model the resting Paracoccus enzyme is converted to the pulsed form during turnover. The effect is observed with both cytochrome c and hexamine ruthenium as reductants. With the latter a 60-fold increase in rate is observed.  相似文献   

8.
The crystal structure of chaperonin-60 from Paracoccus denitrificans (P.cpn60) has been determined at 3.2 A resolution by the molecular replacement method. Two heptameric rings of identical subunits of P.cpn60 in adjacent asymmetric units are stacked in a back-to-back manner and form a cylinder, as found in GroEL, cpn60 from Escherichia coli. With respect to the unliganded GroEL structure, each subunit of P.cpn60 tilts 2 degrees outwards and the apical domain twists 4 degrees counter-clockwise in the top view in a hinge-like manner, rendering the central hole 5 A wider. Despite the subunit tilts, both rings in P.cpn60 contact at two sites of the equatorial domain in the same way as in GroEL. Interactions between residues 434 and 434, and 463 and 463 observed in GroEL were not found in P.cpn60, and the interaction between 452 and 461 was weaker in P.cpn60 than in GroEL. The unique hydrogen bond between 468 and 471 was observed at the right site in P.cpn60, which could account for why the subunits tilt outwards. The contact surface area was reduced at the left site, which is similar to the observed changes in the GroEL structures induced by ATP binding. In general, inter-ring interactions in P.cpn60 were weakened, which is consistent with findings that P.cpn60 is observed in single-ring forms as well as in double-ring forms.  相似文献   

9.
10.
Properties of Paracoccus denitrificans amicyanin   总被引:4,自引:0,他引:4  
Paracoccus denitrificans synthesizes an inducible, periplasmic, blue copper protein [Husain, M., & Davidson, V.L. (1985) J. Biol. Chem. 260, 14626-14629] that can be classified as an amicyanin on the basis of its ability to accept electrons from methylamine dehydrogenase. The amino acid composition and sequence of the 10 N-terminal residues of this protein have been determined. From these data, it is evident that amicyanin is structurally distinct from azurins as it contains no disulfide bond and an N-terminal sequence that is completely different from the highly conserved N-terminal azurin sequences. Dialysis of reduced amicyanin against potassium cyanide resulted in a nearly quantitative yield of apoamicyanin. Amicyanin and apoamicyanin exhibit fluorescence emission maxima at 314 nm when excited at 280 nm. Addition of 6 M guanidine hydrochloride shifts these emission maxima to 350 nm. The fluorescence intensity of apoamicyanin is 10-fold greater than that of amicyanin. Addition of copper to the apoprotein caused a stoichiometric quenching of fluorescence and restoration of visible absorbance with no concomitant change in absorbance at 280 nm. At least one cysteine residue, which reacts with 5,5'-dithiobis(2-nitrobenzoic acid) in apoamicyanin, does not react in the holoprotein, even in the presence of 6 M guanidine hydrochloride. Reductive and oxidative titrations of amicyanin indicate that it is a one-electron carrier. This amicyanin is also able to accept electrons from the methylamine dehydrogenase isolated from bacterium W3A1, which is taxonomically very different from P. denitrificans.  相似文献   

11.
Abstract: Paracoccus denitrificans strain PD1222 (from N. Harms, Vrije Universiteit, Amsterdam, The Netherlands), which is deficient in a host-specific restriction system, could be successfully used for (1) transposon Tn5 mutagenesis, (2) phage P1-mediated generalized transduction and (3) construction of Hfr strains. Experimental protocols and some properties of an ammonium transport-deficient mutant are described.  相似文献   

12.
Single crystals have been prepared of Paracoccus denitrificans amicyanin, a blue copper protein that serves as an electron acceptor for methylamine dehydrogenase. The crystals belong to the monoclinic space group P2(1), and have unit cell parameters a = 20.90 A, b = 56.61 A, c = 27.55 A and beta = 96.41. There is one molecule in the asymmetric unit. The crystals diffract to beyond 1.5 A resolution.  相似文献   

13.
Paracoccus denitrificans produces two primary enzymes for the amine oxidation, tryptophan-tryptophylquinone (TTQ)-containing methylamine dehydrogenase (MADH) and quinohemoprotein amine dehydrogenase (QH-AmDH). QH-AmDH has a novel cofactor, cysteine tryptophylquinone (CTQ) and two hemes c. In this work, the redox potentials of three redox centers in QH-AmDH were determined by a mediator-assisted continuous-flow column electrolytic spectroelectrochemical technique. Kinetics of the electron transfer from QH-AmDH to three kinds of metalloproteins, amicyanin, cytochrome c(550), and horse heart cytochrome c were examined on the basis of the theory of mediated-bioelectrocatalysis. All these metalloproteins work as a good electron acceptor of QH-AmDH and donate the electron to the terminal oxidase of P. denitrificans, which was revealed by reconstitution of the respiratory chain. These properties are in marked contrast with those of MADH, which shows high specificity to amicyanin. These electron transfer kinetics are discussed in terms of thermodynamics and structural property.  相似文献   

14.
15.
Methanol dehydrogenase from Paracoccus denitrificans was purified to homogeneity in two steps from the periplasmic fraction of methanol-grown cells. The enzyme was composed of subunits of M(r) 67,000 and 12,000, and non-covalently bound pyrroloquinoline quinone. It exhibited a pH optimum at pH values of 9.0 and above. It was not stable at pH greater than 9.0, but exhibited little loss of activity after prolonged incubation at pH values as low as 4.5. Methyl dehydrogenase was relatively stable to thermal denaturation. The thermal stability was enhanced by the presence of Ca2+ and diminished by the presence of EDTA. These data suggest a structural role for Ca2+ in this enzyme, similar to what has been observed with quinoprotein glucose and ethanol dehydrogenases.  相似文献   

16.
Two proteins isolated from Paracoccus denitrificans, the copper-containing electron carrier amicyanin and the pyrroloquinoline quinone-containing enzyme methylamine dehydrogenase, have been shown to form a complex. Complex formation between methylamine dehydrogenase and either oxidized or reduced amicyanin resulted in alterations in the absorbance spectrum of the pyrroloquinoline quinone prosthetic group of methylamine dehydrogenase. Binding of amicyanin to the enzyme exhibited positive cooperativity. Complex formation with methylamine dehydrogenase shifted the oxidation-reduction midpoint potential of amicyanin by 73 mV, from +294 to +221 mV, making electron transfer from amicyanin to cytochrome c551 (Em = +190 mV) thermodynamically possible.  相似文献   

17.
Highly active succinate-ubiquinone reductase has been purified from cytoplasmic membranes of aerobically grown Paracoccus denitrificans. The purified enzyme has a specific activity of 100 units per mg protein, and a turnover number of 305 s-1. Succinate-ubiquinone reductase activity of the purified enzyme is inhibited by 3'-methylcarboxin and thenoyltrifluoroacetone. Four subunits, with apparent molecular masses of 64.9, 28.9, 13.4 and 12.5 kDa, were observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains 5.62 nmol covalently bound flavin and 3.79 nmol cytochrome b per mg protein. The 64.9 kDa subunit was shown to be a flavoprotein by its fluorescence. Polyclonal antibodies raised against this protein cross-reacted with the flavoprotein subunit of bovine heart mitochondrial succinate-ubiquinone reductase. The 28.9 kDa subunit is likely analogous to the bovine heart iron protein, and the cytochrome b heme is probably associated with one or both of the low-molecular-weight polypeptides. The cytochrome b is not reducible with succinate but is reoxidized with fumarate after prereduction with dithionite. Iron-sulfur clusters S-1 and S-3 of the Paracoccus oxidoreductase exhibit EPR spectra very similar to their mitochondrial counterparts. Paracoccus succinate-ubiquinone reductase complex is thus similar to the bovine heart mitochondrial enzyme with respect to prosthetic groups, enzymatic activity, inhibitor sensitivities, and polypeptide subunit composition.  相似文献   

18.
NADP-dependent isocitrate dehydrogenase (ICDH) from the bacterium Paracoccus denitrificans was purified to homogeneity. The purification procedure involved ammonium sulphate fractionation, ion exchange chromatography, and gel permeation chromatography. The specific activity of purified ICDH was 801 nkat/mg, the yield of the enzyme 58%. The purity of the enzyme was checked by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. ICDH is a dimer composed of two probably identical subunits of relative molecular weight 90,000. The pH optimum of the enzyme reaction in the direction of substrate oxidation was found to be 5.6; the presence of Mn2+ is essential for enzyme activity. The absorption and fluorescence spectra of the homogeneous enzyme were measured as well.  相似文献   

19.
20.
Porins from outer membrane of Gram-negative bacteria have a highly stable structure. Our previous studies on porin from Paracoccus denitrificans showed that the outer membrane protein porin is extremely stable toward heat, pH, and chemical denaturants. The major question we have addressed in this paper is whether the high stability of porin is a consequence of the beta-barrel structure and whether it is required for its function. To explain this we have analyzed two cases: first, we used porin wild-type and mutants and compared their structure and function; second, we compared the activity of porin preheated to different temperatures. Structural changes were monitored by infrared spectroscopy. We observed that the structural stability of porin is not equivalent to functional activity as minor alteration in the structure can result in drastic differences in the activity of porins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号