首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S-D-lactoylglutathione in resting and activated human neutrophils   总被引:1,自引:0,他引:1  
Zymosan particles opsonised with human serum factors functionally activate human neutrophils and induce a substantial modification of the human neutrophil cytosolic glyoxalase system. The activity of glyoxalase I increases and the activity of glyoxalase II decreases by 20-40% of their resting cell activities during the initial 10 min of activation. The cellular concentration of the glyoxalase intermediate S-D-lactoylglutathione increases by ca. 100% of resting cell levels during this period. This modification may be related to the ability of S-D-lactoylglutathione to stimulate the assembly of microtubules.  相似文献   

2.
The glyoxalase system of human promyelocytic leukaemia HL60 cells was substantially modified during differentiation to neutrophils. The activity of glyoxalase I was decreased and the activity of glyoxalase II was markedly increased relative to the level in control HL60 promyelocytes. There was a decrease in the apparent maximum velocity, Vmax, of glyoxalase I, and an increase in the Vmax of glyoxalase II. The apparent Michaelis constants for both enzymes remained unchanged. The flux of intermediates metabolised via the glyoxalase system increased during differentiation, as judged by the formation of D-lactic acid, whereas the percentage of glucotriose metabolised via the glyoxalase system remained unchanged. The cellular concentrations of the glyoxalase substrates, methylglyoxal and S-D-lactoylglutathione, were markedly decreased during differentiation. The maturation of HL60 promyelocytes is associated with an increased ability to metabolise S-D-lactoylglutathione by glyoxalase II and a concomitant decrease in the mean intracellular concentrations of S-D-lactoylglutathione and methylglyoxal. The maintenance of a high concentration of S-D-lactoylglutathione in HL60 promyelocytes may be related to the status of the microtubular cytoskeleton, since S-D-lactoylglutathione potentiates the GTP-promoted assembly of microtubules.  相似文献   

3.
The human red-blood-cell glyoxalase system was modified by incubation with high concentrations of glucose in vitro. Red-blood-cell suspensions (50%, v/v) were incubated with 5 mM- and 25 mM-glucose to model normal and hyperglycaemic glucose metabolism. There was an increase in the flux of methylglyoxal metabolized to D-lactic acid via the glyoxalase pathway with high glucose concentration. The increase was approximately proportional to initial glucose concentration over the range studied (5-100 mM). The activities of glyoxalase I and glyoxalase II were not significantly changed, but the concentrations of the glyoxalase substrates, methylglyoxal and S-D-lactoylglutathione, and the percentage of glucotriose metabolized via the glyoxalase pathway, were significantly increased. The increase in the flux of intermediates metabolized via the glyoxalase pathway during periodic hyperglycaemia may be a biochemical factor involved in the development of chronic clinical complications associated with diabetes mellitus.  相似文献   

4.
Glyoxalase I activity in alpha-type budding yeast of the Saccharomyces cerevisiae strain was increased by exposure of alpha-type cells to supernatant of a culture of a-type yeast cells, although glyoxalase II activity was decreased by the same treatment. The alteration of enzyme activity in the glyoxalase system occurred during the 30-60 min period after exposure of alpha-type cells to a-type culture supernatant. No change of glyoxalase I and II activities was found in the case of the alpha-type strain, S. cerevisiae VQ3 (alpha ste3-1), which is deficient in a-factor receptors.  相似文献   

5.
A glyoxalase I gene homologue (VdGLO1) was identified in the vascular wilt fungus Verticillium dahliae by sequence tag analysis of genes expressed during resting structure development. The results of the current study show that the gene encodes a putative 345 amino acid protein with high similarity to glyoxalase I, which produces S-D-lactoylglutathione from the toxic metabolic by-product methylglyoxal (MG). Disruption of the V. dahliae gene by Agrobacterium tumefaciens-mediated transformation resulted in enhanced sensitivity to MG. Mycelial growth of disruption mutants was severely reduced in the presence of 5 mmol/L MG. In contrast, spore production in liquid medium was abolished at 1 mmol/L MG, although not at physiologically relevant concentrations of 相似文献   

6.
7.
Glyoxalase I converts methylglyoxal and glutathione to S-lactoylglutathione and glyoxalase II converts this compound to D-lactic acid, regenerating glutathione in the process. A recent study from my laboratory has provided evidence that S-lactoylglutathione modulates microtubule assembly in vitro whereas concanavalin A (Con A) has been shown to increase microtubule occurrence in polymorphonuclear leukocytes (PMN). The present report describes the dose-dependent activation by Con A of both glyoxalase I and II in PMN and lymphocytes. In nine experiments with PMN, Con A (100 microgram/ml) increased glyoxalase I and II activities by 19 +/- 8% and 12 +/- 10% (mean +/- S.D.). In 17 experiments with lymphocytes, activation of the two enzymes by 10 microgram/ml Con A was 30 +/- 14% and 28 +/- 8%. Changes occurred after a 1-min incubation with Con A and persisted for at least 60 min. Since both enzyme activities are increased it is not clear if S-lactoylglutathione levels are increased or decreased but presumably they change. The present findings are compatible with the hypothesis that Con A increases microtubule occurrence in PMN by affecting the glyoxalase enzymes. They also represent a newly described early biochemical change caused by Con A in lymphocytes.  相似文献   

8.
In principle, competitive inhibitors of glyoxalase I that also serve as substrates for the thioester hydrolase glyoxalase II might function as tumor-selective anti-cancer agents, given the role of these enzymes in removing cytotoxic methylglyoxal from cells and the observation that glyoxalase II activity is abnormally low in some types of cancer cells. In support of the feasibility of this anticancer strategy, an inhibitor of this type has been synthesized by a thioester-interchange reaction between glutathione and N-hydroxy-N-methylcarbamate 4-chlorophenyl ester to give S-(N-hydroxy-N-methylcarbamoyl)glutathione (1). This compound was designed to be a tight-binding inhibitor of glyoxalase I, on the basis of its stereoelectronic similarity to the enediol(ate) intermediate that forms along the reaction pathway of this enzyme. Indeed, 1 is a competitive inhibitor of yeast glyoxalase I, with an inhibition constant (Ki = 68 microM) that is approximately 30-fold lower than that reported for S-D-lactoylglutathione and approximately 7-fold lower than the Km for glutathione-methylglyoxal thiohemiacetal. In addition, 1 is a substrate for bovine liver glyoxalase II, with a Km (0.48 mM) approximately equal to that of the normal substrate S-D-lactoyglutathione and a kcat approximately 2 x 10(-5)-fold that of the normal substrate. Membrane transport studies show that 1 can be delivered into human erythrocytes (used here as a model cell) either by direct diffusion of 1 across the cell membrane or by more rapid diffusion of the glycylethyl ester of 1 across the cell membrane, followed by the catalyzed hydrolysis of the ester to give 1.  相似文献   

9.
The kinetics of glyoxalase I [(R)-S-lactoylglutathione methylglyoxal-lyase; EC 4.4.1.5] and glyoxalase II (S-2-hydroxyacylglutathione hydrolase; EC 3.1.2.6) from Saccharomyces cerevisiae was studied in situ, in digitonin permeabilized cells, using two different approaches: initial rate analysis and progress curves analysis. Initial rate analysis was performed by hyperbolic regression of initial rates using the program HYPERFIT. Glyoxalase I exhibited saturation kinetics on 0.05-2.5 mM hemithioacetal concentration range, with kinetic parameters Km 0.53 +/- 0.07 mM and V (3.18 +/- 0.16) x 10(-2) mM.min(-1). Glyoxalase II also showed saturation kinetics in the SD-lactoylglutathione concentration range of 0.15-3 mM and Km 0.32 +/- 0.13 mM and V (1.03 +/- 0.10) x 10(-3) mM.min(-1) were obtained. The kinetic parameters of both enzymes were also estimated by nonlinear regression of progress curves using the raw absorbance data and integrated differential rate equations with the program GEPASI. Several optimization methods were used to minimize the sum of squares of residuals. The best parameter fit for the glyoxalase I reaction was obtained with a single curve analysis, using the irreversible Michaelis-Menten model. The kinetic parameters obtained, Km 0.62 +/- 0.18 mM and V (2.86 +/- 0.01) x 10(-2) mM.min(-1), were in agreement with those obtained by initial rate analysis. The results obtained for glyoxalase II, using either the irreversible Michaelis-Menten model or a phenomenological reversible hyperbolic model, showed a high correlation of residuals with time and/or high values of standard deviation associated with Km. The possible causes for the discrepancy between data obtained from initial rate analysis and progress curve analysis, for glyoxalase II, are discussed.  相似文献   

10.
The nature of the binding determinants used in the interaction of glutathione-based derivatives and bovine liver glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6) has been investigated. Linear competitive inhibition was observed for S-blocked and S,N-blocked glutathiones with bovine liver glyoxalase II (molecular weight 22 500 by sodium dodecyl sulphate polyacrylamide gel electrophoresis; pI = 7.48 by analytical isoelectric focussing). There is a significant hydrophobic region on the enzyme to bind substituents around the sulphydryl-derived moiety of the substrate--a hydrophobic S-site. However, there is no evidence for binding of the N-site of the substrate (or inhibitor) to glyoxalase II. In contrast to glyoxalase I, there is no linkage between binding forces used at the S- and N-sites. Binding of S,N-dicarbobenzoxyglutathione is pH-dependent, showing dependence on an ionisation with pKapp approximately equal to 7.2 (binding more tightly at higher pH), as is the kcat value (pKapp approximately equal to 7.8) for S-D-lactoylglutathione.  相似文献   

11.
In order to improve the biotechnological potentials of Escherichia coli cells to produce glutathione, S-D-lactoylglutathione and other gamma-glutamyl compounds, the genes for enzymes [gamma-L-glutamyl-L-cysteine synthetase (GSH A) in E. coli B, glutathione synthetase (GSH B) in E. coli B, glyoxalase I (GLO I) in Pseudomonas putida] were cloned and amplified in E. coli. E. coli B cells transformed with both GSH A and GSH B genes exhibited a high activity in the synthesis of glutathione and other gamma-glutamyl compounds in bioreactor systems containing immobilized cells. E. coli C600 cells transformed with GLO I gene of P. putida showed a high GLO I activity and were used for the preparation of S-D-lactoylglutathione and other glutathione thiol esters.  相似文献   

12.
The prevalent glyoxalase II (S-2-hydroxyacylglutathione hydrolase, EC 3.1.2.6, a form) of rat liver cytosol has been studied with a series of seven S-blocked glutathione derivatives. At pH 7.4 and 20 degrees C, only p-nitrobenzyl-S-glutathione was found completely inactive. All the other derivatives are linear competitive inhibitors of the enzyme. Ki values using S-D-lactoylglutathione as substrate are reported. Alkyl-S-glutathiones are weak inhibitors and their inhibition increases with the decrease of the length of the alkyl chain. The best inhibitors are those glutathione derivatives which contain a thioester bond (carbobenzoxy- and p-nitrocarbobenzoxy-S-glutathione) or a carbonyl group (p-chlorophenacyl-S-glutathione). Inhibition by carbobenzoxy-S-glutathione seems to be more complex since the double reciprocal plot shows deviation from linearity at low substrate concentration.  相似文献   

13.
Two separate pools of glyoxalase II were demonstrated in rat liver mitochondria, one in the intermembrane space and the other in the matrix. The enzyme was purified from both sources by affinity chromatography on S-(carbobenzoxy)glutathione-Affi-Gel 40. From both crude and purified preparations polyacrylamide gel-electrophoresis resolved multiple forms of glyoxalase II, two from the intermembrane space and five from the matrix. Among the thioesters of glutathione tested as substrates, S-D-lactoylglutathione was hydrolyzed most efficiently by the enzymes from both sources. Significant differences were observed in the specificities between the intermembrane space and matrix enzymes with S-acetoacetylglutathione, S-acetylglutathione, S-propionylglutathione and S-succinylglutathione as substrates. Pure glyoxalase II from rat liver cytosol was chemically polymerized and used as antigen. Antibodies were raised in rabbits and the antiserum was used for comparison of the two purified mitochondrial enzymes with cytosolic glyoxalase II by immunoblotting. The enzyme purified from the intermembrane space cross-reacted with the antiserum, but the matrix glyoxalase II did not. The results give evidence for the presence in rat liver mitochondria of two species of glyoxalase II with differing characteristics. Only the enzyme from the intermembrane space appears to resemble the cytosolic glyoxalase II forms.  相似文献   

14.
It has been reported earlier that nucleotides, nucleosides and a series of structurally related compounds as well as compounds based on transition state analogy inhibit yeast glyoxalase I. In our study on the metabolic regulation of glyoxalase I, we have found that nucleotides such as ATP, GTP and different classes of other reagents based on transition state analogy (D-isoascorbate, dihydroxyfumaric acid, rhodizonic acid) do not inhibit yeast or goat liver glyoxalase I. The reported inhibition of glyoxalase I by these compounds has been found to be due to the interference of these compounds with the absorbancy at 240 nm of S-D-lactoylglutathione formed by the glyoxalase I reaction. Glyoxalase I from goat liver has been found to be strongly and competitively inhibited by lactaldehyde. But, lactaldehyde has very little inhibitory effect on yeast glyoxalase I. Lactaldehyde is formed from methylglyoxal, the substrate for glyoxalase I by the enzyme methylglyoxal reductase. D-Lactaldehyde inhibits the liver enzyme more strongly than L-lactaldehyde.  相似文献   

15.
Cigarette smoking is associated with a number of fatal diseases, including cancer of different organs. A number of oxoaldehydes are found in cigarette smoke, among which methylglyoxal (MG) is known to cause toxicity to cells upon accumulation. In biological systems, MG is converted to s-d-lactoylglutathione by glyoxalase I with reduced glutathine (GSH) as a cofactor, and s-d-lactoylglutathione is converted to D-lactic acid with simultaneous regeneration of GSH, by glyoxalase II. In the present study, we have investigated the status of the glyoxalase enzymes in kidney tissues from rats exposed to passive cigarette smoke. No significant change has been noted in glyoxalase I activity. Glyoxalase II was decreased during 1 and 2 weeks of exposure, and after that the activity was increased. The initial decrease in the activity of gly II may be due to the excess amount of methylglyoxal generated due to smoke exposure or the adduct formed by MG and GSH which known to inhibit gly II activity. Both enzymes help in the detoxification of cigarette smoke induced chemicals and biochemicals.  相似文献   

16.
Summary The formation of the reactive,-dicarbonyl metabolite, methylglyoxal, is increased during hyperglycaemia associated with diabetes mellitus. Methylglyoxal is metabolised to S-D-lactoylglutathione and D-lactate by the glyoxalase system and to hydroxyacetone (95%) and D-lactaldehyde by aldose reductase. Methylglyoxal and hydroxyacetone bind and modify protein, producing fluorescent products. Red blood cell activities of glyoxalase enzymes are risk factors for the development of clinical complications of diabetes. Aldose reductase inhibitors decrease the concentration of methylglyoxal in experimental diabetic rats to normal levels, aminoguanidine and L-arginine scavenge methylglyoxal; these effects may be involved in their prospective preventive therapy of diabetic complications. Biochemical and clinical evidence suggests that the metabolism of methylglyoxal in diabetes mellitus is linked to the development of diabetic complications. A causal relationship may involve modification of protein by methylglyoxal and hydroxyacetone.  相似文献   

17.
The glyoxalase pathway of Leishmania infantum was kinetically characterized as a trypanothione-dependent system. Using time course analysis based on parameter fitting with a genetic algorithm, kinetic parameters were estimated for both enzymes, with trypanothione derived substrates. A K(m) of 0.253 mm and a V of 0.21 micromol.min(-1).mg(-1)for glyoxalase I, and a K(m) of 0.098 mm and a V of 0.18 micromol.min(-1).mg(-1) for glyoxalase II, were obtained. Modelling and computer simulation were used for evaluating the relevance of the glyoxalase pathway as a potential therapeutic target by revealing the importance of critical parameters of this pathway in Leishmania infantum. A sensitivity analysis of the pathway was performed using experimentally validated kinetic models and experimentally determined metabolite concentrations and kinetic parameters. The measurement of metabolites in L. infantum involved the identification and quantification of methylglyoxal and intracellular thiols. Methylglyoxal formation in L. infantum is nonenzymatic. The sensitivity analysis revealed that the most critical parameters for controlling the intracellular concentration of methylglyoxal are its formation rate and the concentration of trypanothione. Glyoxalase I and II activities play only a minor role in maintaining a low intracellular methylglyoxal concentration. The importance of the glyoxalase pathway as a therapeutic target is very small, compared to the much greater effects caused by decreasing trypanothione concentration or increasing methylglyoxal concentration.  相似文献   

18.
Glyoxalase I and II catalyze the formation and breakdown of S-lactoylglutathione respectively. Recent studies have implicated this com-pound as a possible mediator of immune and inflammatory responses. Incubation of human polymorphonuclear leukocytes with the tumor promoter, 12-0-tetradecanoylphorbol-13-acetate has been found to affect the activities of both glyoxalase enzymes in an interrelated manner. The diester either increases the activity of glyoxalase I or decreases the activity of glyoxalase II or has both effects. It is suggested that a subsequent increase in S-lactoylglutathione might mediate some or all of the effects of the phorbol diesters.  相似文献   

19.
Eighteen patients with ischaemic heart disease were trained for 3 months, three times a week. The effectiveness of the training programme was demonstrated by increases of 27% in peak oxygen uptake and 29% in exercise duration, and by a decrease in resting and submaximal heart rates. Blood pressure, however, was not significantly affected during the training period. At rest and at submaximal exercise plasma renin activity (PRA) was lower after training. Plasma angiotensin I concentration (PA I) and angiotensin II concentration (PA II) were not significantly affected. Plasma aldosterone concentration (PAC), only measured at rest, was not significantly changed after the training period, while plasma norepinephrine (PNE) and epinephrine (PE) concentrations were significantly decreased, but only at high levels of exercise. A reduced sympathetic tone after training, suggested by the lower heart rates and the tendency to a decrease in PNE, is a likely explanation for the decrease in PRA. However, despite this decrease, PA I, PA II, and PAC were not significantly changed after training; the reason for this disrepancy is unknown.  相似文献   

20.
Vascular smooth muscle contractility is tightly coupled to ATP production by intermediary metabolism. To elucidate mechanisms underlying coordination of metabolism and contractility we studied the time course of isometric force, and the activation of phosphorylase and cAMP-dependent protein kinases during stimulation of bovine coronary arterial strips with KCl. Isometric force reached a maximum after 10 min of exposure to 30 mM KCl (ED90) and was sustained throughout the subsequent 20-min period of contraction. In contrast, activation of phosphorylase was biphasic: enzymic activity reached a maximum (176 +/- 10% of control) after 3 min of contraction and then, though remaining above control, activity declined to a lower level (135 +/- 7% of control). However, no change occurred in the activity ratios for cAMP-dependent protein kinase assessed in either the presence (type II isozyme) or absence (type I isozyme) of 0.5 M NaCl. These data suggest that the activation of phosphorylase during K+-induced contraction is independent of the cAMP system. The biphasic activation of phosphorylase may reflect transient changes in the intracellular concentration of Ca2+ or the activation of a phosphatase(s) during the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号