首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

Background

Exosomes are nanovesicles actively secreted by potentially all cell types, including tumour cells, with the primary role of extracellular systemic communication mediators, both at autocrine and paracrine levels, at short and long distances. Recently, different studies have used exosomes as a delivery system for a plethora of different molecules, such as drugs, microRNAs and proteins. This has been made possible thanks to the simplicity in exosomes engineering, their great stability and versatility for applications in oncology as well as in regenerative medicine.

Scope of review

The aim of this review is to provide information on the state-of-the-art and possible applications of engineered exosomes, both for cargo and specific cell-targeting, in different pathologies related to the musculoskeletal system.

Major conclusions

The use of exosomes as therapeutic agents is rapidly evolving, different studies explore drug delivery with exosomes using different molecules, showing an enormous potential in various research fields such as oncology and regenerative medicine.

General significance

However, despite the significant progress made by the different studies carried out, currently, the use of exosomes is not a therapeutic reality for the considerable difficulties to overcome.  相似文献   

2.

Background

Low back pain (LBP) is the symptom of a group of syndromes with heterogeneous underlying mechanisms and molecular pathologies, making treatment selection and patient prognosis very challenging. Moreover, symptoms and prognosis of LBP are influenced by age, gender, occupation, habits, and psychological factors. LBP may be characterized by an underlying inflammatory process. Previous studies indicated a connection between inflammatory response and total plasma N-glycosylation. We wanted to identify potential changes in total plasma N-glycosylation pattern connected with chronic low back pain (CLBP), which could give an insight into the pathogenic mechanisms of the disease.

Methods

Plasma samples of 1128 CLBP patients and 760 healthy controls were collected in clinical centers in Italy, Belgium and Croatia and used for N-glycosylation profiling by hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) after N-glycans release, fluorescent labeling and clean-up. Observed N-glycosylation profiles have been compared with a cohort of 126 patients with acute inflammation that underwent abdominal surgery.

Results

We have found a statistically significant increase in the relative amount of high-branched (tri-antennary and tetra-antennary) N-glycan structures on CLBP patients' plasma glycoproteins compared to healthy controls. Furthermore, relative amounts of disialylated and trisialylated glycan structures were increased, while high-mannose and glycans containing bisecting N-acetylglucosamine decreased in CLBP.

Conclusions

Observed changes in CLBP on the plasma N-glycome level are consistent with N-glycosylation changes usually seen in chronic inflammation.

General significance

To our knowledge, this is a first large clinical study on CLBP patients and plasma N-glycome providing a new glycomics perspective on potential disease pathology.  相似文献   

3.

Background

Malaria is a serious parasitic infection affecting millions of people worldwide each year. Cerebral malaria is the most severe complication of Plasmodium infections, predominantly affecting children. Extracellular vesicles are essential mediators of intercellular communication and include apoptotic bodies, microvesicles and exosomes. Microvesicle numbers increase during disease pathogenesis and inhibition of their release can prevent brain pathology and mortality.

Scope of review

We explore the current knowledge on microvesicles and exosomes in cerebral malaria pathogenesis.

Major conclusions

Microvesicles and exosomes are implicated in cerebral malaria pathogenesis, in the modulation of host immunity to Plasmodium, and in cell-cell communication. Blocking their production is protective in models of cerebral malaria, both in vivo and in vitro.

General significance

While anti-malarial treatments exist to combat Plasmodium infections, increasing drug resistance presents a major challenge. In order to improve diagnosis and treatment outcomes, further research is required to better appreciate extracellular vesicle involvement in cerebral malaria.  相似文献   

4.

Background aims

The immunomodulatory property of mesenchymal stromal cell (MSC) exosomes is well documented. On the basis of our previous report that MSC exosomes increased regulatory T-cell (Treg) production in mice with allogenic skin graft but not in ungrafted mice, we hypothesize that an activated immune system is key to exosome-mediated Treg production.

Methods

To test our hypothesis, MSC exosomes were incubated with mouse spleen CD4+ T cells that were activated with either anti-CD3/CD28 mAbs or allogenic antigen-presenting cell (APC)-enriched spleen CD11c+ cells to determine whether production of mouse CD4+CD25+ T cells or CD4+CD25+Foxp3+ Tregs could be induced. MSC exosomes were also administered to the lethal chimeric human-SCID mouse model of graft-versus-host disease (GVHD) in which human peripheral blood mononuclear cells were infused into irradiated NSG mice to induce GVHD.

Results

We report here that MSC exosome–induced production of CD4+CD25+ T cells or CD4+CD25+Foxp3+ Tregs from CD4+ T cells activated by allogeneic APC-enriched CD11C+ cells but not those activated by anti-CD3/CD28 mAbs. This induction was exosome- and APC dose–dependent. In the mouse GVHD model in which GVHD was induced by transplanted human APC-stimulated human anti-mouse CD4+ T cell effectors, MSC exosome alleviated GVHD symptoms and increased survival. Surviving exosome-treated mice had a significantly higher level of human CD4+CD25+CD127low/– Tregs than surviving mice treated with Etanercept, a tumor necrosis factor inhibitor.

Conclusions

MSC exosome enhanced Treg production in vitro and in vivo through an APC-mediated pathway.  相似文献   

5.

Background

It remains an open question whether plant phloem sap proteins are functionally involved in plant defense mechanisms.

Methods

The antifungal effects of two profilin proteins from Arabidopsis thaliana, AtPFN1 and AtPFN2, were tested against 11 molds and 4 yeast fungal strains. Fluorescence profiling, biophysical, and biochemical analyses were employed to investigate their antifungal mechanism.

Results

Recombinant AtPFN1 and AtPFN2 proteins, expressed in Escherichia coli, inhibited the cell growth of various pathogenic fungal strains at concentrations ranging from 10 to 160?μg/mL. The proteins showed significant intracellular accumulation and cell-binding affinity for fungal cells. Interestingly, the AtPFN proteins could penetrate the fungal cell wall and membrane and act as inhibitors of fungal growth via generation of cellular reactive oxygen species and mitochondrial superoxide. This triggered the AtPFN variant-induced cell apoptosis, resulting in morphological changes in the cells.

Conclusion

PFNs may play a critical role as antifungal proteins in the Arabidopsis defense system against fungal pathogen attacks.

General significance

The present study indicates that two profilin proteins, AtPFN1 and AtPFN2, can act as natural antimicrobial agents in the plant defense system.  相似文献   

6.
7.

Background

Glycosylation is one of the most common post-translation modifications with large influences on protein structure and function. The effector function of immunoglobulin G (IgG) alters between pro- and anti-inflammatory, based on its glycosylation. IgG glycan synthesis is highly complex and dynamic.

Methods

With the use of two different analytical methods for assessing IgG glycosylation, we aim to elucidate the link between DNA methylation and glycosylation of IgG by means of epigenome-wide association studies. In total, 3000 individuals from 4 cohorts were analyzed.

Results

The overlap of the results from the two glycan measurement panels yielded DNA methylation of 7 CpG-sites on 5 genomic locations to be associated with IgG glycosylation: cg25189904 (chr.1, GNG12); cg05951221, cg21566642 and cg01940273 (chr.2, ALPPL2); cg05575921 (chr.5, AHRR); cg06126421 (6p21.33); and cg03636183 (chr.19, F2RL3). Mediation analyses with respect to smoking revealed that the effect of smoking on IgG glycosylation may be at least partially mediated via DNA methylation levels at these 7 CpG-sites.

Conclusion

Our results suggest the presence of an indirect link between DNA methylation and IgG glycosylation that may in part capture environmental exposures.

General significance

An epigenome-wide analysis conducted in four population-based cohorts revealed an association between DNA methylation and IgG glycosylation patterns. Presumably, DNA methylation mediates the effect of smoking on IgG glycosylation.  相似文献   

8.

Background

Spontaneous intracranial hypotension (SIH) is caused by cerebrospinal fluid (CSF) leakage. Definitive diagnosis can be difficult by clinical examinations and imaging studies.

Methods

SIH was diagnosed with the following criteria: (i) evidence of CSF leakage by cranial magnetic resonance imaging (MRI) findings of intracranial hypotension and/or low CSF opening pressure; (ii) no recent history of dural puncture. We quantified CSF proteins by ELISA or Western blotting.

Results

Comparing with non-SIH patients, SIH patients showed significant increase of brain-derived CSF glycoproteins such as lipocalin-type prostaglandin D synthase (L-PGDS), soluble protein fragments generated from amyloid precursor protein (sAPP) and “brain-type” transferrin (Tf). Serum-derived proteins such as albumin, immunoglobulin G, and serum Tf were also increased. A combination of L-PGDS and brain-type Tf differentiated SIH from non-SIH with sensitivity 94.7% and specificity 72.6%.

Conclusion

L-PGDS and brain-type Tf can be biomarkers for diagnosing SIH.

General significance

L-PGDS and brain-type Tf biosynthesized in the brain appears to be markers for abnormal metabolism of CSF.  相似文献   

9.

Background

DNA methylation at the 5-position of cytosine is an epigenetic modification of CpG dinucleotides. In addition to CpG methylation, the G-quadruplex (G4) structure has been reported as a regulator of gene expression. The identification of G4 forming sequences in CpG islands suggests an involvement of CpG-methylated G4 structures in biological processes; however, few reports have addressed the effects of CpG methylation on G4 structure.

Methods

The thermostability of a methylated, 21-mer G4 structure located on the vascular endothelial growth factor (VEGF) gene promoter containing four CpG sites (C1, C6, C11, and C17) were investigated using circular dichroism (CD) spectral analysis.

Results

CD melting analysis revealed that VEGF G4 was stabilized by a single CpG methylation on C11 in the presence of Na+ and Mg2+. However, either C1 or C11 methylation enhanced VEGF G4 thermal stability in the presence of K+.

Conclusions

Single CpG methylation appears to enhance VEGF G4 thermostability in a manner dependent on both the CpG methylation site and cation type.

General significance

These results are expected to contribute to the elucidation of the roles of CpG methylation-stabilized G4 structures in biological processes.  相似文献   

10.

Background

The development of approaches that increase therapeutic effects of anti-cancer drugs is one of the most important tasks of oncology. Caloric restriction in vivo or serum deprivation (SD) in vitro has been shown to be an effective tool for sensitizing cancer cells to chemotherapeutic drugs. However, the detailed mechanisms underlying the enhancement of apoptosis in cancer cells by SD remain to be elucidated.

Methods

Flow cytometry, caspase activity assay and western blotting were used for cell death rate evaluation. Western blotting, gel-filtration, siRNA approach and qRT-PCR were used to elucidate the mechanism underlying cell death potentiation upon SD.

Results

We demonstrated that SD sensitizes cancer cells to treatment with chemotherapeutic agent cisplatin. This effect is independent on activation of caspases-2 and -8, apical caspases triggering apoptosis in response to genotoxic stress. SD potentiates cell death via downregulation of the anti-apoptotic protein Mcl-1. In fact, SD reduces the Mcl-1 mRNA level, which consequently decreases the Mcl-1 protein level and renders cells more susceptible to apoptosis induction via the formation of apoptosome.

Conclusions

Mcl-1 protein is an important regulator of sensitivity of cancer cells to apoptotic stimuli upon SD.

General significance

This study identifies Mcl-1 as a new target for the sensitization of human cancer cells to cell death by SD, which is of great significance for the development of efficient anti-cancer therapies.  相似文献   

11.

Background

Metabolic reprogramming and hypoxia contribute to the resistance of conventional chemotherapeutic drugs in kinds of cancers. In this study, we investigated the effect of dihydrotanshinone I (DHTS) on reversing dysregulated metabolism of glucose and fatty acid in colon cancer and elucidated its mechanism of action.

Methods

Cell viability was determined by MTT assay. Oxidative phosphorylation, glycolysis, and mitochondrial fuel oxidation were assessed by Mito stress test, glycolysis stress test, and mito fuel flex test, respectively. Anti-cancer activity of DHTS in vivo was evaluated in Colon cancer xenograft. Hexokinase activity and free fatty acid (FFA) content were assessed using respective Commercial kits. Gene expression patterns were determined by performing DNA microarray analysis and real-time PCR. Protein expression was assessed using immunoblotting and immunohistochemistry.

Results

DHTS showed similar cytotoxicity against colon cancer cells under hypoxia and normoxia. DHTS decreased the efficiency of glucose and FA as mitochondrial fuels in HCT116 cells, which efficiently reversed by VO-OHpic trihydrate. DHTS reduced hexokinase activity and free fatty acid (FFA) content in tumor tissue of xenograft model of colon cancer. Gene expression patterns in metabolic pathways were dramatically differential between model and treatment group. Increases in PTEN and a substantial decrease in the expression of SIRT3, HIF1α, p-AKT, HKII, p-MTOR, RHEB, and p-ACC were detected.

Conclusions

DHTS reversed metabolic reprogramming in colon cancer through PTEN/AKT/HIF1α-mediated signal pathway.

General significance

The study is the first to report the reverse of metabolic reprogramming by DHTS in colon cancer. Meantime, SIRT3/PTEN/AKT/HIF1α mediated signal pathway plays a critical role during this process.  相似文献   

12.
13.
14.

Background

Monolayer cell cultures have been considered the most suitable technique for in vivo cellular experiments. However, a lot of cellular functions and responses that are present in natural tissues are lost in two-dimensional cell cultures. In this context, nanoparticle accumulation data presented in literature are often not accurate enough to predict behavior of nanoparticles in vivo. Cellular spheroids show a higher degree of morphological and functional similarity to the tissues.

Methods

Accumulation and distribution of carboxylated CdSe/ZnS quantum dots (QDs), chosen as model nanoparticles, was investigated in cellular spheroids composed of different phenotype mammalian cells. The findings were compared with the results obtained in in vivo experiments with human tumor xenografts in immunodeficient mice. The diffusive transport model was used for theoretical nanoparticles distribution estimation.

Results

QDs were accumulated only in cells, which were localized in the periphery of cellular spheroids. CdSe/ZnS QDs were shown to be stable and inert; they did not have any side-effects for cellular spheroids formation. Penetration of QDs in both cellular spheroids and in vivo tumor model was limited. The mathematical model confirmed the experimental results: nanoparticles penetrated only 25 μm into cellular spheroids after 24 h of incubation.

Conclusions

Penetration of negatively charged nanoparticles is limited not only in tumor tissue, but also in cellular spheroids.

General Significance

The results presented in this paper show the superior applicability of cellular spheroids to cell monolayers in the studies of the antitumor effect and penetration of nanomedicines.  相似文献   

15.

Background

Questions about the reliability of parametric standard errors (SEs) from nonlinear least squares (LS) algorithms have led to a general mistrust of these precision estimators that is often unwarranted.

Methods

The importance of non-Gaussian parameter distributions is illustrated by converting linear models to nonlinear by substituting eA, ln A, and 1/A for a linear parameter a. Monte Carlo (MC) simulations characterize parameter distributions in more complex cases, including when data have varying uncertainty and should be weighted, but weights are neglected. This situation leads to loss of precision and erroneous parametric SEs, as is illustrated for the Lineweaver-Burk analysis of enzyme kinetics data and the analysis of isothermal titration calorimetry data.

Results

Non-Gaussian parameter distributions are generally asymmetric and biased. However, when the parametric SE is < 10% of the magnitude of the parameter, both the bias and the asymmetry can usually be ignored. Sometimes nonlinear estimators can be redefined to give more normal distributions and better convergence properties.

Conclusion

Variable data uncertainty, or heteroscedasticity, can sometimes be handled by data transforms but more generally requires weighted LS, which in turn require knowledge of the data variance.

General significance

Parametric SEs are rigorously correct in linear LS under the usual assumptions, and are a trustworthy approximation in nonlinear LS provided they are sufficiently small — a condition favored by the abundant, precise data routinely collected in many modern instrumental methods.  相似文献   

16.

Objective

To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD).

Methods

Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17?weeks.

Results

Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides.

Conclusion

Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels.  相似文献   

17.

Background

During standard gene cloning, the recombinant protein appearing in bacteria as the result of expression leakage very often inhibits cell proliferation leading to blocking of the cloning procedure. Although different approaches can reduce transgene basal expression, the recombinant proteins, which even in trace amounts inhibit bacterial growth, can completely prevent the cloning process.

Methods

Working to solve the problem of DNase II-like cDNA cloning, we developed a novel cloning approach. The method is based on separate cloning of the 5′ and 3′ fragments of target cDNA into a vector in such a way that the short Multiple Cloning Site insertion remaining between both fragments changes the reading frame and prevents translation of mRNA arising as a result of promoter leakage. Subsequently, to get the vector with full, uninterrupted Open Reading Frame, the Multiple Cloning Site insertion is removed by in vitro restriction/ligation reactions, utilizing the unique restriction site present in native cDNA.

Results

Using this designed method, we cloned a coding sequence of AcDNase II that is extremely toxic for bacteria cells. Then, we demonstrated the usefulness of the construct prepared in this way for overexpression of AcDNase II in eukaryotic cells.

Conclusions

The designed method allows cloning of toxic protein coding sequences that cannot be cloned by standard methods.

General significance

Cloning of cDNAs encoding toxic proteins is still a troublesome problem that hinders the progress of numerous studies. The method described here is a convenient solution to cloning problems that are common in research on toxic proteins.  相似文献   

18.

Background

G-quadruplexes (G4s) are nucleic acids secondary structures formed in guanine-rich sequences. Anti-G4 antibodies represent a tool for the direct investigation of G4s in cells. Surface Plasmon Resonance (SPR) is a highly sensitive technology, suitable for assessing the affinity between biomolecules. We here aimed at improving the orientation of an anti-G4 antibody on the SPR sensor chip to optimize detection of binding antigens.

Methods

SPR was employed to characterize the anti-G4 antibody interaction with G4 and non-G4 oligonucleotides. Dextran-functionalized sensor chips were used both in covalent coupling and capturing procedures.

Results

The use of two leading molecule for orienting the antibody of interest allowed to improve its activity from completely non-functional to 65% active. The specificity of the anti-G4 antobody for G4 structures could thus be assessed with high sensitivity and reliability.

Conclusions

Optimization of the immobilization protocol for SPR biosensing, allowed us to determine the anti-G4 antibody affinity and specificity for G4 antigens with higher sensitivity with respect to other in vitro assays such as ELISA. Anti-G4 antibody specificity is a fundamental assumption for the future utilization of this kind of antibodies for monitoring G4s directly in cells.

General significance

The heterogeneous orientation of amine-coupling immobilized ligands is a general problem that often leads to partial or complete inactivation of the molecules. Here we describe a new strategy for improving ligand orientation: driving it from two sides. This principle can be virtually applied to every molecule that loses its activity or is poorly immobilized after standard coupling to the SPR chip surface.  相似文献   

19.

Background

Injection localized amyloidosis is one of the most prevalent disorders in type II diabetes mellitus (TIIDM) patients relying on insulin injections. Previous studies have reported that nanoparticles can play a role in the amyloidogenic process of proteins. Hence, the present study deals with the effect of zinc oxide nanoparticles (ZnONP) on the amyloidogenicity and cytotoxicity of insulin.

Methods

ZnONP is synthesised and characterized using XRD, Zeta Sizer, UV-Visible spectroscope and TEM. The characterization is followed by ZnONP interaction with insulin, which is studied employing fluorescence spectroscopes, isothermal titration calorimetry and molecular dynamics simulations. The interaction leads insulin conformational rearrangement into amyloid-like fibril, which is studied using thioflavin T dye binding assay, circular dichroism spectroscopy and TEM, followed by cytotoxicity propensity using Alamar Blue dye reduction assay.

Results

Insulin has very weak interaction with ZnONP interface. Insulin at studied concentration forms amorphous aggregates at physiological pH, whereas in presence of ZnONP interface amyloid-like fibrils are formed. While the amyloid-like fibrils are cytotoxic to MIN6 and THP-1 cell lines, insulin and ZnONP individual solutions and their fresh mixtures enhance the cells proliferation.

Conclusions

The presence of ZnONP interface enhances insulin fibrillation at physiological pH by providing a favourable template for the nucleation and growth of insulin amyloids.

General significance

The studied protein-nanoparticle system from protein conformational dynamics point of view throws caution over nanoparticle use in biological applications, especially in vivo applications, considering the amyloidosis a very slow but non-curable degenerative disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号