首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work has revealed that the association of a disordered region of a protein with a folded binding partner can occur as rapidly as association between two folded proteins. This is the case for the phosphatase calcineurin (CaN) and its association with its activator calmodulin. Calmodulin binds to the intrinsically disordered regulatory domain of CaN. Previous studies have shown that electrostatic steering can accelerate the binding of folded proteins with disordered ligands. Given that electrostatic forces are strong determinants of disordered protein ensembles, the relationship between electrostatics, conformational ensembles, and quaternary interactions is unclear. Here, we employ experimental approaches to explore the impact of electrostatic interactions on the association of calmodulin with the disordered regulatory region of CaN. We find that estimated association rate constants of calmodulin with our chosen calmodulin-substrates are within the diffusion-limited regime. The association rates are dependent on the ionic strength, indicating that favorable electrostatic forces increase the rate of association. Further, we show that charged amino acids outside the calmodulin-binding site modulate the binding rate. Conformational ensembles obtained from computer simulations suggest that electrostatic interactions within the regulatory domain might bias the conformational ensemble such that the calmodulin binding region is readily accessible. Given the prevalence of charged residues in disordered protein chains, our findings are likely relevant to many protein-protein interactions.  相似文献   

2.
The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which CaM activates CaM-dependent protein kinases. Previously published data have hinted that the RD of CaN is intrinsically disordered. In this work, we demonstrate that the RD is unstructured and that it folds upon binding CaM, ousting the AID from the catalytic site. The RD is 95 residues long, with the AID attached to its C-terminal end and the 24-residue CaM binding region toward the N-terminal end. This is unlike the CaM-dependent protein kinases that have CaM binding sites and AIDs immediately adjacent in sequence. Our data demonstrate that not only does the CaM binding region folds but also an ~25- to 30-residue region between it and the AID folds, resulting in over half of the RD adopting α-helical structure. This appears to be the first observation of CaM inducing folding of this scale outside of its binding site on a target protein.  相似文献   

3.
Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development and nervous system function. Previous studies have demonstrated that the regulatory domain (RD) of CaN binds calmodulin (CaM) towards the N-terminal end. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the RD, although the mechanistic details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the auto-inhibitory domain (AID) from the active site of CaN, activating phosphatase activity. In the absence of calcium-loaded CaM, the RD is disordered, and binding of CaM induces folding in the RD. In order to provide mechanistic detail about the CaM–CaN interaction, we have undertaken an NMR study of the RD of CaN. Complete 13C, 15N and 1H assignments of the RD of CaN were obtained using solution NMR spectroscopy. The backbone of RD has been assigned using a combination of 13C-detected CON-IPAP experiments as well as traditional HNCO, HNCA, HNCOCA and HNCACB-based 3D NMR spectroscopy. A 15N-resolved TOCSY experiment has been used to assign Hα and Hβ chemical shifts.  相似文献   

4.
Chen B  Mayer MU  Squier TC 《Biochemistry》2005,44(12):4737-4747
Stabilization of the plasma membrane Ca-ATPase (PMCA) in an inactive conformation upon oxidation of multiple methionines in the calcium regulatory protein calmodulin (CaM) is part of an adaptive cellular response to minimize ATP utilization and the generation of reactive oxygen species (ROS) under conditions of oxidative stress. To differentiate oxidant-induced structural changes that selectively modify the amino-terminal domain of CaM from those that modulate the conformational coupling between the opposing domains, we have engineered a tetracysteine binding motif within helix A in the amino-terminal domain of calmodulin (CaM) that permits the selective and rigid attachment of the conformationally sensitive fluorescent probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein-(1,2-ethanedithiol)(2) (FlAsH-EDT(2)). The position of the FlAsH label in the amino-terminal domain provides a signal for monitoring its binding to the CaM-binding sequence of the PMCA. Following methionine oxidation, there is an enhanced binding affinity between the amino-terminal domain and the CaM-binding sequence of the PMCA. To identify oxidant-induced structural changes, we used frequency domain fluorescence anisotropy measurements to assess the structural coupling between helix A and the amino- and carboxyl-terminal domains of CaM. Helix A undergoes large amplitude motions in apo-CaM; following calcium activation, helix A is immobilized as part of a conformational switch that couples the opposing domains of CaM to stabilize the high-affinity binding cleft associated with target protein binding. Methionine oxidation disrupts the structural coupling between opposing globular domains of CaM, without affecting the calcium-dependent immobilization of helix A associated with activation of the amino-terminal domain to promote high-affinity binding to target proteins. We suggest that this selective disruption of the structural linkage between the opposing globular domains of CaM relieves steric constraints associated with high-affinity target binding, permitting the formation of new contact interactions between the amino-terminal domain and the CaM-binding sequence that stabilizes the PMCA in an inhibited conformation.  相似文献   

5.
O'Donnell SE  Yu L  Fowler CA  Shea MA 《Proteins》2011,79(3):765-786
Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca2+‐calmodulin‐dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T‐cell activation and cardiac hypertrophy in humans. Calcium binding to CaNB (the regulatory subunit) triggers conformational change in CaNA (the catalytic subunit). Two isoforms of CaNA (α, β) are both abundant in brain and heart and activated by calcium‐saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca2+)4‐CaM1–148 bound to βCaNp, a peptide representing its CaM‐binding domain, indicated a 1:1 stoichiometry. βCaNp binding to CaM increased the affinity of calcium for the N‐ and C‐domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium‐saturated CaM domains dissociating from βCaNp were ~1 μM. A limiting Kd ≤ 1 nM was measured directly for full‐length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. βCaNp binding to 15N‐(Ca2+)4‐CaM1–148 monitored by 15N/1HN HSQC NMR showed that association perturbed the N‐domain of CaM more than its C‐domain. NMR resonance assignments of CaM and βCaNp, and interpretation of intermolecular NOEs observed in the 13C‐edited and 12C‐14N‐filtered 3D NOESY spectrum indicated anti‐parallel binding. The sole aromatic residue (Phe) located near the βCaNp C‐terminus was in close contact with several residues of the N‐domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of βCaN. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Boschek CB  Sun H  Bigelow DJ  Squier TC 《Biochemistry》2008,47(6):1640-1651
We have used fluorescence spectroscopy to investigate the structure of calmodulin (CaM) bound with CaM-binding sequences of either the plasma membrane Ca-ATPase or the skeletal muscle ryanodine receptor (RyR1) calcium release channel. Following derivatization with N-(1-pyrene)maleimide at engineered sites (T34C and T110C) within the N- and C-domains of CaM, contact interactions between these opposing domains of CaM resulted in excimer fluorescence that permits us to monitor conformational states of bound CaM. Complementary measurements take advantage of the unique conserved Trp within CaM-binding sequences that functions as a hydrophobic anchor in CaM binding and permits measurements of both a local and global peptide structure. We find that CaM binds with high affinity in a collapsed structure to the CaM-binding sequences of both the Ca-ATPase and RyR1, resulting in excimer formation that is indicative of contact interactions between the N- and the C-domains of CaM in complex with these CaM-binding peptides. There is a 4-fold larger amount of excimer formation for CaM bound to the CaM-binding sequence of the Ca-ATPase in comparison to RyR1, indicating a closer structural coupling between CaM domains in this complex. Prior to CaM association, the CaM-binding sequences of the Ca-ATPase and RyR1 are conformationally disordered. Upon CaM association, the CaM-binding sequence of the Ca-ATPase assumes a highly ordered structure. In comparison, the CaM-binding sequence of RyR1 remains conformationally disordered irrespective of CaM binding. These results suggest an important role for interdomain contact interactions between the opposing domains of CaM in stabilizing the structure of the peptide complex. The substantially different structural responses associated with CaM binding to Ca-ATPase and RyR1 indicates a plasticity in their respective binding mechanisms that accomplishes different physical mechanisms of allosteric regulation, involving either the dissociation of a C-terminal regulatory domain necessary for pump activation or the modulation of intersubunit interactions to diminish RyR1 channel activity.  相似文献   

7.
A major cause of neuronal dysfunction is due to altered Ca2+ regulation. An increase in Ca2+ influx can activate Ca2+-dependent enzymes including calpains, causing the proteolysis of its specific substrates. In the present study, calcineurin (CaN) was found to be proteolysed by a Ca2+-dependent cysteine protease, m-calpain. In the presence of Ca2+, the 60 kDa subunit (CaN A) was degraded to a 46 kDa immunoreactive fragment, whereas in the presence of Ca2+ /calmodulin (CaM) immunoreactive fragments of 48 and 54 kDa were observed. The beta-subunit (CaN B) was not proteolysed in either condition. The proteolysis of CaN A increased its phosphatase activity and rendered it totally CaM-independent after 10 min of proteolysis. The molecular weight of the proteolytic fragments suggested that the m-calpain cleaved CaN A in the CaN B binding domain. A CaM-overlay experiment revealed that the CaM-binding site was present only in the 54 kDa fragment produced by CaN A proteolysis in the presence of Ca2+ /CaM. Thus, the increase in CaN A phosphatase activity observed in many neuronal disorders, may be due to the action of calpain.  相似文献   

8.
T Arazi  G Baum  W A Snedden  B J Shelp    H Fromm 《Plant physiology》1995,108(2):551-561
We previously provided what to our knowledge is the first evidence that plant glutamate decarboxylase (GAD) is a calmodulin (CaM)-binding protein. Here, we studied the GAD CaM-binding domain in detail. A synthetic peptide of 26 amino acids corresponding to this domain forms a stable complex with Ca2+/CaM with a 1:1 stoichiometry, and amino acid substitutions suggest that tryptophan-485 has an indispensable role in CaM binding. Chemical cross-linking revealed specific CaM/GAD interactions even in the absence of Ca2+. However, increasing KCI concentrations or deletion of two carboxy-terminal lysines abolished these interactions but had a mild effect on CaM/GAD interactions in the presence of Ca2+. We conclude that in the presence of Ca(2+)-hydrophobic interactions involving tryptophan-485 and electrostatic interactions involving the carboxy-terminal lysines mediate CaM/GAD complex formation. By contrast, in the absence of Ca2+, CaM/GAD interactions are essentially electrostatic and involve the carboxy-terminal lysines. In addition, a tryptophan residue and carboxy-terminal lysines are present in the CaM-binding domain of an Arabidopsis GAD. Finally, we demonstrate that petunia GAD activity is stimulated in vitro by Ca2+/CaM. Our study provides a molecular basis for Ca(2+)-dependent CaM/GAD interactions and suggests the possible occurrence of Ca(2+)-independent CaM/GAD interactions.  相似文献   

9.
Calmodulin (CaM) is a ubiquitous second messenger protein that regulates a variety of structurally and functionally diverse targets in response to changes in Ca2+ concentration. CaM-dependent protein kinase II (CaMKII) and calcineurin (CaN) are the prominent CaM targets that play an opposing role in many cellular functions including synaptic regulation. Since CaMKII and CaN compete for the available Ca2+/CaM, the differential affinity of these enzymes for CaM is crucial for achieving a balance in Ca2+ signaling. We used the computational protein design approach to modify CaM binding specificity for these two targets. Starting from the X-ray structure of CaM in complex with the CaM-binding domain of CaMKII, we optimized CaM interactions with CaMKII by introducing mutations into the CaM sequence. CaM optimization was performed with a protein design program, ORBIT, using a modified energy function that emphasized intermolecular interactions in the sequence selection procedure. Several CaM variants were experimentally constructed and tested for binding to the CaMKII and CaN peptides using the surface plasmon resonance technique. Most of our CaM mutants demonstrated small increase in affinity for the CaMKII peptide and substantial decrease in affinity for the CaN peptide compared to that of wild-type CaM. Our best CaM design exhibited an about 900-fold increase in binding specificity towards the CaMKII peptide, becoming the highest specificity switch achieved in any protein-protein interface through the computational protein design approach. Our results show that computational redesign of protein-protein interfaces becomes a reliable method for altering protein binding affinity and specificity.  相似文献   

10.
Protein phosphatases regulated by calmodulin (CaM) mediate the action of intracellular Ca2+ and modulate functions of various target proteins by dephosphorylation. In plants, however, the role of Ca2+ in the regulation of protein dephosphorylation is not well understood due to a lack of information on characteristics of CaM-regulated protein phosphatases. Screening of a cDNA library of the moss Physcomitrella patens by using 35S-labeled calmodulin as a ligand resulted in identification of a gene, PCaMPP, that encodes a protein serine/threonine phosphatase with 373 amino acids. PCaMPP had a catalytic domain with sequence similarity to type 2C protein phosphatases (PP2Cs) with six conserved metal-associating amino acid residues and also had an extra C-terminal domain. Recombinant GST fusion proteins of PCaMPP exhibited Mn2+-dependent phosphatase activity, and the activity was inhibited by pyrophosphate and 1 mm Ca2+ but not by okadaic acid, orthovanadate, or beta-glycerophosphate. Furthermore, the PCaMPP activity was increased 1.7-fold by addition of CaM at nanomolar concentrations. CaM binding assays using deletion proteins and a synthetic peptide revealed that the CaM-binding region resides within the basic amphiphilic amino acid region 324-346 in the C-terminal domain. The CaM-binding region had sequence similarity to amino acids in one of three alpha-helices in the C-terminal domain of human PP2Calpha, suggesting a novel role of the C-terminal domains for the phosphatase activity. These results provide the first evidence showing possible regulation of PP2C-related phosphatases by Ca2+/CaM in plants. Genes similar to PCaMPP were found in genomes of various higher plant species, suggesting that PCaMPP-type protein phosphatases are conserved in land plants.  相似文献   

11.
The catalytically active domain in the A subunit of calcineurin   总被引:1,自引:0,他引:1  
Xiang B  Liu P  Jiang G  Zou K  Yi F  Yang S  Wei Q 《Biological chemistry》2003,384(10-11):1429-1434
Calcineurin (CaN) is a heterodimer composed of a catalytic subunit A (CaNA) and a regulatory subunit B (CaNB). We report here an active truncated mutation of the rat CaNAdelta that contains only the catalytic domain (residues 1-347, also known as a/CaNA). The p-nitrophenyl phosphatase activity and protein phosphatase activity of a/CaNA were higher than that of CaNA. Both p-nitrophenyl phosphatase activity and protein phosphatase activity of a/CaNA were unaffected by CaM and the B-subunit; the B-subunit and CaM have relatively little effect on p-nitrophenyl phosphatase activity and a crucial effect on protein phosphatase activity of CaNA. Mn2+ and Ni2+ ions effeciently activated CaNA. The Km of a/CaNA was about 16 mM, and the k(cat) of a/CaNA was 10.03 s(-1) using pNPP as substrate. With RII peptide as a substrate, the Km of a/CaNA was about 21 microM and the k(cat) of a/CaNA was 0.51 s(-1). The optimum reaction temperature was about 45 degrees C, and the optimum reaction pH was about 7.2. Our results indicate that a/CaNA is the catalytic core of CaNA, and CaN and the B-subunit binding domain itself might play roles in the negative regulation of the phosphatase activity of CaN. The results provide the basis for future studies on the catalytic domain of CaN.  相似文献   

12.
Shen X  Li H  Ou Y  Tao W  Dong A  Kong J  Ji C  Yu S 《The Journal of biological chemistry》2008,283(17):11407-11413
The protein serine/threonine phosphatase calcineurin (CN) is activated by calmodulin (CaM) in response to intracellular calcium mobilization. A widely accepted model for CN activation involves displacement of the CN autoinhibitory peptide (CN(467-486)) from the active site upon binding of CaM. However, CN activation requires calcium binding both to the low affinity sites of CNB and to CaM, and previous studies did not dissect the individual contributions of CNB and CaM to displacement of the autoinhibitory peptide from the active site. In this work we have produced separate CN fragments corresponding to the CNA regulatory region (CNRR(381-521), residues 381-521), the CNA catalytic domain truncated at residue 341, and the CNA-CNB heterodimer with CNA truncated at residue 380 immediately after the CNB binding helix. We show that the separately expressed regulatory region retains its ability to inhibit CN phosphatase activity of the truncated CN341 and CN380 and that the inhibition can be reversed by calcium/CaM binding. Tryptophan fluorescence quenching measurements further indicate that the isolated regulatory region inhibits CN activity by occluding the catalytic site and that CaM binding exposes the catalytic site. The results provide new support for a model in which calcium binding to CNB enables CaM binding to the CNA regulatory region, and CaM binding then instructs an activating conformational change of the regulatory region that does not depend further on CNB. Moreover, the secondary structural content of the CNRR(381-521) was tentatively addressed by Fourier transform infrared spectroscopy. The results indicate that the secondary structure of CNRR(381-521) fragment is predominantly random coil, but with significant amount of beta-strand and alpha-helix structures.  相似文献   

13.
La3+ stimulate the activity of calcineurin in two different ways   总被引:1,自引:0,他引:1  
It is well known that the activity of calcineurin (CaN) could be modulated by several transitional metal ions. In the present work, the effects of a calcium analog, lanthanum ion (La3+), on the activity of CaN were studied. It was found that La3+ exerted multiple effects on CaN activity. La3+ could stimulate CaN in the absence of calmodulin (CaM); whereas at low concentrations of La3+, there was a slight inhibition of activation of CaN in the presence of CaM. Competitive experiments and limited trypsin proteolysis confirmed that La3+ did not act on the catalytic core of CaN, but exerted its effect through direct action on the CaN regulatory domain similar to Mg2+. In activity titration and spot blotting studies, La3+-containing CaM complexes were less effective in stimulating CaN than Ca2+ or Mn2+-containing CaM; however, the binding affinity of these metal–CaM complexes to CaN was similar. These effects of La3+ on CaN activity are unique among metal ions and may provide clues to understand the biological effects of La3+.  相似文献   

14.
Calcineurin (CaN) binds Ca(2+)-saturated calmodulin (CaM) with relatively high affinity; however, an accurate steady-state K(d) value has not been determined. In this report, we describe, using steady-state and stopped-flow fluorescence techniques, the rates of association and dissociation of Ca(2+)-saturated CaM from CaN heterodimer (CaNA/CaNB) and CaNA only. The rate of Ca(2+)/CaM association was determined to be 4.6 x 10(7) M(-1)s(-1). The rate of Ca(2+)/CaM dissociation from CaN was slower than previously reported and was approximately 0.0012 s(-1). In preparations of CaNA alone (no regulatory CaNB subunit), the dissociation rate was slowed further to 0.00026 s(-1). From these data we calculate a K(d) for binding of Ca(2+)-saturated CaM to CaN of 28 pM. This K(d) is significantly lower than previously reported estimates of approximately 1 nM and indicates that CaN is one of the highest affinity CaM-binding proteins identified to date.  相似文献   

15.
DRP-1 is a pro-apoptotic Ca2+/calmodulin (CaM)-regulated serine/threonine kinase, recently isolated as a novel member of the DAP-kinase family of proteins. It contains a short extra-catalytic tail required for homodimerization. Here we identify a novel regulatory mechanism that controls its pro-apoptotic functions. It comprises a single autophosphorylation event mapped to Ser308 within the CaM regulatory domain. A negative charge at this site reduces both the binding to CaM and the formation of DRP-1 homodimers. Conversely, the dephosphorylation of Ser308, which takes place in response to activated Fas or tumour necrosis factor-alpha death receptors, increases the formation of DRP-1 dimers, facilitates the binding to CaM and activates the pro-apoptotic effects of the protein. Thus, the process of enzyme activation is controlled by two unlocking steps that must work in concert, i.e. dephosphorylation, which probably weakens the electrostatic interactions between the CaM regulatory domain and the catalytic cleft, and homodimerization. This mechanism of negative autophosphorylation provides a safety barrier that restrains the killing effects of DRP-1, and a target for efficient activation of the kinase by various apoptotic stimuli.  相似文献   

16.
Human cystathionine β-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization.  相似文献   

17.
Spinach calmodulin (CaM) has been labeled at cysteine-26 with the sulfhydryl-selective probe 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) to produce MIANS-CaM. The interaction of MIANS-CaM with CaM binding proteins was studied by fluorescence enhancement accompanying the protein-protein interactions. MIANS-CaM bound to smooth muscle myosin light-chain kinase with a Kd of 9 nM, causing a 4.6-fold fluorescence enhancement. Caldesmon bound with a Kd of 250 nM, causing a 2-fold fluorescence enhancement. Calcineurin (CaN) bound to MIANS-CaM with a Kd less than 5 nM, causing an 80% increase in fluorescence. On the other hand, binding of the CaM antagonist drugs prenylamine and calmidazolium or the potent peptide antagonist melittin did not alter MIANS fluorescence. MIANS-CaM activated brain cGMP phosphodiesterase and CaN as effectively as unlabeled CaM. Spinach CaM was also labeled with three other sulfhydryl reagents, 6-acryloyl-2-(dimethylamino)naphthalene, (2,5-dimethoxy-4-stilbenyl)maleimide, and rhodamine X maleimide. CaN bound to the highly fluorescent rhodamine X maleimidyl-CaM with a Kd of 1.4 nM, causing a 25% increase in polarization. Both MIANS-CaM and rhodamine X-CaM were used to monitor the Ca2+ dependence of the interaction between CaM and CaN. Half-maximal binding occurred at pCa 6.7-6.8 in the absence of Mg2+, or at pCa 6.3 in the presence of 3 mM Mg2+. In both cases, the dependence of the interaction was cooperative with respect to Ca2+ (Hill coefficients of 1.7-2.0). Use of these fluorescent CaMs should allow accurate monitoring of CaM interactions with its target proteins and perhaps their localization within the cell.  相似文献   

18.
Calmodulin (CaM) is a highly flexible calcium-binding protein that mediates signal transduction through an ability to differentially bind to highly variable binding sequences in target proteins. To identify how binding affects CaM motions, and its relationship to conformational entropy and target peptide sequence, we have employed fully atomistic, explicit solvent molecular dynamics simulations of unbound CaM and CaM bound to five different target peptides. The calculated CaM conformational binding entropies correlate with experimentally derived conformational entropies with a correlation coefficient R2 of 0.95. Selected side-chain interactions with target peptides restrain interhelical loop motions, acting to tune the conformational entropy of the bound complex via widely distributed CaM motions. In the complex with the most conformational entropy retention (CaM in complex with the neuronal nitric oxide synthase binding sequence), Lys-148 at the C-terminus of CaM forms transient salt bridges alternating between Glu side chains in the N-domain, the central linker, and the binding target. Additional analyses of CaM structures, fluctuations, and CaM-target interactions illuminate the interplay between electrostatic, side chain, and backbone properties in the ability of CaM to recognize and discriminate against targets by tuning its conformational entropy, and suggest a need to consider conformational dynamics in optimizing binding affinities.  相似文献   

19.
D Yin  H Sun  R F Weaver  T C Squier 《Biochemistry》1999,38(41):13654-13660
To investigate the role of hydrophobic interactions involving methionine side chains in facilitating the productive association between calmodulin (CaM) and the plasma membrane (PM) Ca-ATPase, we have substituted the polar amino acid Gln for Met at multiple positions in both the amino- and carboxyl-terminal domains of CaM. Conformationally sensitive fluorescence signals indicate that these mutations have little effect on the backbone fold of the carboxyl-terminal domain of CaM. The insertion of multiple Gln in either globular domain results in a decrease in the apparent affinity of CaM for the PM-Ca-ATPase. However, despite the multiple substitution of Gln for four methionines at positions 36, 51, 71, and 72 in the amino-terminal domain or for three methionines at positions 124, 144, and 145 in the carboxyl-terminal domain, these mutant CaMs are able to fully activate the PM-Ca-ATPase. Thus, although these CaM mutants have a decreased affinity for the CaM-binding site on the Ca-ATPase, they retain the ability to fully activate the Ca-ATPase at saturating concentrations of CaM. The role of individual methionines in modulating the affinity between the carboxyl terminus and the PM-Ca-ATPase was further investigated through the substitution of individual Met with Gln. Upon substitution of Met(124) and Met(144) with Gln, there is a 5- and 10-fold increase in the amount of CaM necessary to obtain half-maximal activation of the PM-Ca-ATPase, indicating that these methionine side chains participate in the high-affinity association between CaM and the PM-Ca-ATPase. However, substitution of Gln for Met(145) results in no change in the apparent affinity between CaM and the PM-Ca-ATPase, indicating that in contrast to all other known CaM targets, Met(145) does not participate in the interaction between CaM and the PM-Ca-ATPase. These results emphasize differences in the binding interactions between individual methionines in CaM and different target enzymes, and suggest that hydrophobic interactions between methionines in CaM and the binding site on the PM-Ca-ATPase are not necessary for enzyme activation. Calculation of the binding affinities of individual CaM domains associated with activation of the PM-Ca-ATPase suggests that mutations of methionines located in either domain of CaM can decrease the initial high-affinity association between CaM and the PM-Ca-ATPase, but have little effect upon the subsequent binding of the opposing globular domain. These results suggest that the initial associations between CaM and the CaM-binding sequence in the PM-Ca-ATPase are guided by nonspecific hydrophobic interactions involving both domains of CaM.  相似文献   

20.
Calcium-saturated calmodulin (CaM) directly activates CaM-dependent protein kinase I (CaMKI) by binding to a region in the C-terminal regulatory sequence of the enzyme to relieve autoinhibition. The structure of CaM in a high-affinity complex with a 25-residue peptide of CaMKI (residues 294-318) has been determined by X-ray crystallography at 1.7 A resolution. Upon complex formation, the CaMKI peptide adopts an alpha-helical conformation, while changes in the CaM domain linker enable both its N- and C-domains to wrap around the peptide helix. Target peptide residues Trp-303 (interacting with the CaM C-domain) and Met-316 (with the CaM N-domain) define the mode of binding as 1-14. In addition, two basic patches on the peptide form complementary charge interactions with CaM. The CaM-peptide affinity is approximately 1 pM, compared with 30 nM for the CaM-kinase complex, indicating that activation of autoinhibited CaMKI by CaM requires a costly energetic disruption of the interactions between the CaM-binding sequence and the rest of the enzyme. We present biochemical and structural evidence indicating the involvement of both CaM domains in the activation process: while the C-domain exhibits tight binding toward the regulatory sequence, the N-domain is necessary for activation. Our crystal structure also enables us to identify the full CaM-binding sequence. Residues Lys-296 and Phe-298 from the target peptide interact directly with CaM, demonstrating overlap between the autoinhibitory and CaM-binding sequences. Thus, the kinase activation mechanism involves the binding of CaM to residues associated with the inhibitory pseudosubstrate sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号