首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aquaporin-4 (AQP4) is the predominant water channel in different organs and tissues. An alteration of its physiological functioning is responsible for several disorders of water regulation and, thus, is considered an attractive target with a promising therapeutic and diagnostic potential. Molecular dynamics (MD) simulations performed on the AQP4 tetramer embedded in a bilayer of lipid molecules allowed us to analyze the role of spontaneous fluctuations occurring inside the pore. Following the approach by Hashido et al. [Hashido M, Kidera A, Ikeguchi M (2007) Biophys J 93: 373–385], our analysis on 200 ns trajectory discloses three domains inside the pore as key elements for water permeation. Herein, we describe the gating mechanism associated with the well-known selectivity filter on the extracellular side of the pore and the crucial regulation ensured by the NPA motifs (asparagine, proline, alanine). Notably, on the cytoplasmic side, we find a putative gate formed by two residues, namely, a cysteine belonging to the loop D (C178) and a histidine from loop B (H95). We observed that the spontaneous reorientation of the imidazole ring of H95 acts as a molecular switch enabling H-bond interaction with C178. The occurrence of such local interaction seems to be responsible for the narrowing of the pore and thus of a remarkable decrease in water flux rate. Our results are in agreement with recent experimental observations and may represent a promising starting point to pave the way for the discovery of chemical modulators of AQP4 water permeability.  相似文献   

2.
Escherichia coli lactose permease (LacY) transports sugar across the inner membrane of the bacterium using the proton motive force to accumulate sugar in the cytosol. We have probed lactose conduction across LacY using steered molecular dynamics, permitting us to follow molecular and energetic details of lactose interaction with the lumen of LacY during its permeation. Lactose induces a widening of the narrowest parts of the channel during permeation, the widening being largest within the periplasmic half-channel. During permeation, the water-filled lumen of LacY only partially hydrates lactose, forcing it to interact with channel lining residues. Lactose forms a multitude of direct sugar-channel hydrogen bonds, predominantly with residues of the flexible N-domain, which is known to contribute a major part of LacY's affinity for lactose. In the periplasmic half-channel lactose predominantly interacts with hydrophobic channel lining residues, whereas in the cytoplasmic half-channel key protein-substrate interactions are mediated by ionic residues. A major energy barrier against transport is found within a tight segment of the periplasmic half-channel where sugar hydration is minimal and protein-sugar interaction maximal. Upon unbinding from the binding pocket, lactose undergoes a rotation to permeate either half-channel with its long axis aligned parallel to the channel axis. The results hint at the possibility of a transport mechanism, in which lactose permeates LacY through a narrow periplasmic half-channel and a wide cytoplasmic half-channel, the opening of which is controlled by changes in protonation states of key protein side groups.  相似文献   

3.

Background

The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.

Scope of review

The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.

Major conclusions

Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.

General significance

Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.  相似文献   

4.
The structural stability of 8 × ([D-Leu-L-Lys-(D-Gln-L-Ala)3]) cyclic peptide nanotube (CPN) in water and different phospholipid bilayers were explored by 100 ns independent molecular dynamics (MD) simulations. The role of non-bonded interaction energy between the side and main chains of cyclic peptide rings in different membrane environments assessed, wherein the repulsive electrostatic interaction energy between neighbouring cyclic peptide rings was found adequate to break hydrogen bond energy thereby to crumple CPN. Further, the water permeation across the CPN channel was studied in four types of phospholipid bilayers- DMPG (1,2-Dimyristoyl-sn-glycero-3-phosphorylglycerol), DMPS (1,2-Dimyristoyl-sn-glycero-3-phosphoserine), POPC (1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPE (1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) from MD simulations. DMPS membrane shows higher non-bonded interaction energies (?1913.06 kJ/mol of electrostatic interaction energy and ?994.13 kJ/mol of van der Waals interaction energy) with CPN due to the presence of polar molecules in lipid structure. Thusly, the non-bonded interaction energies were essential towards the stability of CPN than hydrogen bonds between the nearby cyclic peptides. The result also reveals the role of side chains, hydrogen bonds and non-bonded interaction energies in an aqueous environment. The diffusion coefficient of water obtained from means square deviation calculation shows similar coefficients irrespective of the lipid surroundings. However, the permeation coefficients demonstrate water flow in the channel relies upon the environment.  相似文献   

5.
Aquaporin (AQP) functions as a water-conducting pore. Mercury inhibits the water permeation through AQP. Although site-directed mutagenesis has shown that mercury binds to Cys189 during the inhibition process, it is not fully understood how this inhibits the water permeation through AQP1. We carried out 40 ns molecular dynamics simulations of bovine AQP1 tetramer with mercury (Hg-AQP1) or without mercury (Free AQP1). In Hg-AQP1, Cys191 (Cys189 in human AQP1) is converted to Cys-SHg+ in each monomer. During each last 10 ns, we observed water permeation events occurred 23 times in Free AQP1 and never in Hg-AQP1. Mercury binding did not influence the whole structure, but did induce a collapse in the orientation of several residues at the ar/R region. In Free AQP1, backbone oxygen atoms of Gly190, Cys191, and Gly192 lined, and were oriented to, the surface of the water pore channel. In Hg-AQP1, however, the SHg+ of Cys191-SHg+ was oriented toward the outside of the water pore. As a result, the backbone oxygen atoms of Gly190, Cys191, and Gly192 became disorganized and the ar/R region collapsed, thereby obstructing the permeation of water. We suggest that mercury disrupts the water pore of AQP1 through local conformational changes in the ar/R region.  相似文献   

6.
The interactions between nicosulfuron and two degradation enzymes (vegetative catalase 1 and manganese ABC transporter) from the Bacillus subtilis YB1 strain were studied and molecular docking simulations and surface plasmon resonance (SPR) were used to research their specific interaction patterns and affinities. The results showed that vegetative catalase 1 and manganese ABC transporter bound specifically to nicosulfuron and that the former binding ability was stronger than that of the latter. The manganese ABC transporter mainly interacted with nicosulfuron by strong hydrophobic interactions and hydrogen bonds (oxyanion hole), while vegetative catalase 1 formed a strong hydrophobic interaction with nicosulfuron in its main channel and hydrogen bond with nicosulfuron in the side chains. Vegetative catalase 1 and manganese ABC transporter catalyze nicosulfuron degradation, and molecular docking simulations and SPR are good methods for studying molecular interactions, which could make a foundation for the study of degradation mechanisms of enzymes.  相似文献   

7.
Aquaporin 0 (AQP0) is essential for eye lens homeostasis as is regulation of its water permeability by Ca2+, which occurs through interactions with calmodulin (CaM), but the underlying molecular mechanisms are not well understood. Here, we use molecular dynamics (MD) simulations on the microsecond timescale under an osmotic gradient to explicitly model water permeation through the AQP0 channel. To identify any structural features that are specific to water permeation through AQP0, we also performed simulations of aquaporin 1 (AQP1) and a pure mixed lipid bilayer under the same conditions. The relative single-channel water osmotic permeability coefficients (pf) calculated from all of our simulations are in reasonable agreement with experiment. Our simulations allowed us to characterize the dynamics of the key structural elements that modulate the diffusion of water single-files through the AQP0 and AQP1 pores. We find that CaM binding influences the collective dynamics of the whole AQP0 tetramer, promoting the closing of both the extracellular and intracellular gates by inducing cooperativity between neighboring subunits.  相似文献   

8.
Prevention of cation permeation in wild-type aquaporin-1 (AQP1) is believed to be associated with the Asn-Pro-Ala (NPA) region and the aromatic/arginine selectivity filter (SF) domain. Previous work has suggested that the NPA region helps to impede proton permeation due to the protein backbone collective macrodipoles that create an environment favoring a directionally discontinuous channel hydrogen-bonded water chain and a large electrostatic barrier. The SF domain contributes to the proton permeation barrier by a spatial restriction mechanism and direct electrostatic interactions. To further explore these various effects, the free-energy barriers and the maximum cation conductance for the permeation of various cations through the AQP1-R195V and AQP1-R195S mutants are predicted computationally. The cations studied included the hydrated excess proton that utilizes the Grotthuss shuttling mechanism, a model “classical” charge localized hydronium cation that exhibits no Grotthuss shuttling, and a sodium cation. The hydrated excess proton was simulated using a specialized multi-state molecular dynamics method including a proper physical treatment of the proton shuttling and charge defect delocalization. Both AQP1 mutants exhibit a surprising cooperative effect leading to a reduction in the free-energy barrier for proton permeation around the NPA region due to altered water configurations in the SF region, with AQP1-R195S having a higher conductance than AQP1-R195V. The theoretical predictions are experimentally confirmed in wild-type AQP1 and the mutants expressed in Xenopus oocytes. The combined results suggest that the SF domain is a specialized structure that has evolved to impede proton permeation in aquaporins.  相似文献   

9.
Transport of water and glycerol in aquaporin 3 is gated by H(+).   总被引:15,自引:0,他引:15  
Aquaporins (AQPs) were expressed in Xenopus laevis oocytes in order to study the effects of external pH and solute structure on permeabilities. For AQP3 the osmotic water permeability, L(p), was abolished at acid pH values with a pK of 6.4 and a Hill coefficient of 3. The L(p) values of AQP0, AQP1, AQP2, AQP4, and AQP5 were independent of pH. For AQP3 the glycerol permeability P(Gl), obtained from [(14)C]glycerol uptake, was abolished at acid pH values with a pK of 6.1 and a Hill coefficient of 6. Consequently, AQP3 acts as a glycerol and water channel at physiological pH, but predominantly as a glycerol channel at pH values around 6.1. The pH effects were reversible. The interactions between fluxes of water and straight chain polyols were inferred from reflection coefficients (sigma). For AQP3, water and glycerol interacted by competing for titratable site(s): sigma(Gl) was 0.15 at neutral pH but doubled at pH 6.4. The sigma values were smaller for polyols in which the -OH groups were free to form hydrogen bonds. The activation energy for the transport processes was around 5 kcal mol(-1). We suggest that water and polyols permeate AQP3 by forming successive hydrogen bonds with titratable sites.  相似文献   

10.
Aquaporins are a family of membrane proteins specialized in rapid water conduction across biological membranes. Whether these channels also conduct gas molecules and the physiological significance of this potential function have not been well understood. Here we report 140 ns of molecular dynamics simulations of membrane-embedded AQP1 and of a pure POPE bilayer addressing these questions. The permeability of AQP1 to two types of gas molecules, O2 and CO2, was investigated using two complementary methods, namely, explicit gas diffusion simulation and implicit ligand sampling. The simulations show that the central (tetrameric) pore of AQP1 can be readily used by either gas molecule to permeate the channel. The two approaches produced similar free energy profiles associated with gas permeation through the central pore: a -0.4 to -1.7 kcal/mol energy well in the middle, and a 3.6-4.6 kcal/mol energy barrier in the periplasmic vestibule. The barrier appears to be mainly due to a dense cluster of water molecules anchored in the periplasmic mouth of the central pore by four aspartate residues. Water pores show a very low permeability to O2, but may contribute to the overall permeation of CO2 due to its more hydrophilic nature. Although the central pore of AQP1 is found to be gas permeable, the pure POPE bilayer provides a much larger cross-sectional area, thus exhibiting a much lower free energy barrier for CO2 and O2 permeation. As such, gas conduction through AQP1 may only be physiologically relevant either in membranes of low gas permeability, or in cells where a major fraction of the cellular membrane is occupied by AQPs.  相似文献   

11.
BACKGROUND INFORMATION: Mercurials inhibit AQPs (aquaporins), and site-directed mutagenesis has identified Cys(189) as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury-insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys(189) of AQP1. Indeed, the osmotic water permeability (P(f)) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His-tagged rAQP4 [corrected] (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+-nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. RESULTS: The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped-flow apparatus. Surprisingly, the P(f) of AQP4 proteoliposomes was significantly decreased by 5 microM HgCl2 within 30 s, and this effect was completely reversed by 2-mercaptoethanol. The dose- and time-dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site-directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys(178), which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. CONCLUSIONS: Our results suggest that mercury inhibits the P(f) of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   

12.
Single-channel osmotic water permeability (p(f)) is a key quantity for investigating the transport capability of the water channel protein, aquaporin. However, the direct connection between the single scalar quantity p(f) and the channel structure remains unclear. In this study, based on molecular dynamics simulations, we propose a p(f)-matrix method, in which p(f) is decomposed into contributions from each local region of the channel. Diagonal elements of the p(f) matrix are equivalent to the local permeability at each region of the channel, and off-diagonal elements represent correlated motions of water molecules in different regions. Averaging both diagonal and off-diagonal elements of the p(f) matrix recovers p(f) for the entire channel; this implies that correlated motions between distantly-separated water molecules, as well as adjacent water molecules, influence the osmotic permeability. The p(f) matrices from molecular dynamics simulations of five aquaporins (AQP0, AQP1, AQP4, AqpZ, and GlpF) indicated that the reduction in the water correlation across the Asn-Pro-Ala region, and the small local permeability around the ar/R region, characterize the transport efficiency of water. These structural determinants in water permeation were confirmed in molecular dynamics simulations of three mutants of AqpZ, which mimic AQP1.  相似文献   

13.
The three-dimensional structure of GlpF, the glycerol facilitator of Escherichia coli, was determined by cryo-electron microscopy. The 6.9-A density map calculated from images of two-dimensional crystals shows the GlpF helices to be similar to those of AQP1, the erythrocyte water channel. While the helix arrangement of GlpF does not reflect the larger pore diameter as seen in the projection map, additional peripheral densities observed in GlpF are compatible with the 31 additional residues in loops C and E, which accordingly do not interfere with the inner channel construction. Therefore, the atomic structure of AQP1 was used as a basis for homology modeling of the GlpF channel, which is predicted to be free of bends, wider, and more vertically oriented than the AQP1 channel. Furthermore, the residues facing the GlpF channel exhibit an amphiphilic nature, being hydrophobic on one side and hydrophilic on the other side. This property may partially explain the contradiction of glycerol diffusion but limited water permeation capacity.  相似文献   

14.
15.
16.
Aquaporins are protein channels located across the cell membrane with the role of conducting water or other small sugar alcohol molecules (aquaglyceroporins). The high-resolution X-ray structure of the human aquaporin 5 (HsAQP5) shows that HsAQP5, as all the other known aquaporins, exhibits tetrameric structure. By means of molecular dynamics simulations we analyzed the role of spontaneous fluctuations on the structural behavior of the human AQP5. We found that different conformations within the tetramer lead to a distribution of monomeric channel structures, which can be characterized as open or closed. The switch between the two states of a channel is a tap-like mechanism at the cytoplasmic end which regulates the water passage through the pore. The channel is closed by a translation of the His67 residue inside the pore. Moreover, water permeation rate calculations revealed that the selectivity filter, located at the other end of the channel, regulates the flow rate of water molecules when the channel is open, by locally modifying the orientation of His173. Furthermore, the calculated permeation rates of a fully open channel are in good agreement with the reported experimental value.  相似文献   

17.
Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability.  相似文献   

18.
Wu Y  Cao Z  Yi H  Jiang D  Mao X  Liu H  Li W 《Biophysical journal》2004,87(1):105-112
Computational methods are employed to simulate interaction of scorpion toxin ScyTx in complex with the small conductance calcium-activated potassium channel rsk2. All of available 25 structures of ScyTx in the Protein Data Bank determined by NMR were considered for improving performance of rigid protein docking of ZDOCK. Four main binding modes were found among a large number of predicted complexes by using clustering analysis, screening with expert knowledge, energy minimization, and molecular dynamics simulations. The quality and validity of the resulting complexes were further evaluated by molecular dynamics simulations with the generalized Born solvation model and by calculation of relative binding free energies with the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) in the AMBER 7 suit of programs. The complex formed by the 22nd structure of the ScyTx and rsk2 channel was identified as the most favorable complex by using a combination of computational methods, which contain further introduction of flexibility without restraining residue side chain. From the resulted spatial structure of the ScyTx and rsk2 channel, ScyTx associates the mouth of the rsk2 channel with alpha-helix rather than beta-sheet. Structural analysis first revealed that Arg(13) played a novel and vital role of blocking the pore of the rsk2 channel, whose role is remarkably different from that of highly homologous scorpion toxin P05. Between the interfaces in the ScyTx-rsk2 complex, strong electrostatic interaction and hydrogen bonds exist between Arg(13) of ScyTx and Gly-Tyr-Gly-Asp sequential residues located in the four symmetrical chains of the pore region. Simultaneously, five hydrogen bonds between Arg(6) of ScyTx and Asp(341)(C), Val(366)(C), and Pro(367)(C), and electrostatic interaction between Arg(6) of ScyTx and Asp(364)(B) and Asp(341)(C) are also found by structural analysis. In addition, His(31) located at the C-terminal of ScyTx is surrounded by Val(342)(A), Asp(364)(A), Met(365)(A), Pro(367)(B), and Asn(366)(B) within a contact distance of 4.0 A. These simulation results are in good agreement with experimental data and can effectively explain the binding phenomena between ScyTx and the potassium channel at the level of molecular spatial structure. The consistency between results of molecular modeling and experimental data strongly suggests that our spatial structure model of the ScyTx-rsk2 complex is reasonable. Therefore, molecular docking combined with molecular dynamics simulations followed by molecular mechanics Poisson-Boltzmann surface area analysis is an attractive approach for modeling scorpion toxin-potassium channel complexes a priori for further biological studies.  相似文献   

19.
Despite sharing overall sequence and structural similarities, water channel aquaporin 0 (AQP0) transports water more slowly than other aquaporins. Using molecular dynamics simulations of AQP0 and AQP1, we find that there is a sudden decrease in the distribution profile of water density along the pore of AQP0 in the region of residue Tyr23, which significantly disrupts the single file water chain by forming hydrogen bond with permeating water molecules. Comparisons of free-energy and interaction-energy profiles for water conduction between AQP0 and AQP1 indicate that this interruption of the water chain causes a huge energy barrier opposing water translocation through AQP0. We further show that a mutation of Tyr23 to phenylalanine leads to a 2- to 4-fold enhancement in water permeability of AQP0, from (0.5 ± 0.2) × 10− 14 cm3s− 1 to (1.9 ± 0.6) × 10− 14 cm3s− 1. Therefore, Tyr23 is a dominate factor leading to the low water permeability in AQP0.  相似文献   

20.
Gao J  Wang X  Chang Y  Zhang J  Song Q  Yu H  Li X 《Analytical biochemistry》2006,350(2):165-170
Water channel proteins, known as aquaporins, are transmembrane proteins that mediate osmotic water permeability. In a previous study, we found that acetazolamide could inhibit osmotic water transportation across Xenopus oocytes by blocking the function of aquaporin-1 (AQP1). The purpose of the current study was to confirm the effect of acetazolamide on water osmotic permeability using the human embryonic kidney 293 (HEK293) cells transfected with pEGFP/AQP1 and to investigate the interaction between acetazolamide and AQP1. The fluorescence intensity of HEK293 cells transfected with pEGFP/AQP1, which corresponds to the cell volume when the cells swell in a hyposmotic solution, was recorded under confocal laser fluorescence microscopy. The osmotic water permeability was assessed by the change in the ratio of cell fluorescence to certain cell area. Acetazolamide, at concentrations of 1 and 10muM, inhibited the osmotic water permeability in HEK293 cells transfected with pEGFP/AQP1. The direct binding between acetazolamide and AQP1 was detected by surface plasmon resonance. AQP1 was prepared from rat red blood cells and immobilized on a CM5 chip. The binding assay showed that acetazolamide could directly interact with AQP1. This study demonstrated that acetazolamide inhibited osmotic water permeability through interaction with AQP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号