首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
2.
We purified a fraction that showed NAD+-linked methylglyoxal dehydrogenase activity, directly catalyzing methylglyoxal oxidation to pyruvate, which was significantly increased in glutathione-depleted Candida albicans. It also showed NADH-linked methylglyoxal-reducing activity. The fraction was identified as a NAD+-linked alcohol dehydrogenase (ADH1) through mass spectrometric analyses. In ADH1-disruptants of both the wild type and glutathione-depleted cells, the intracellular methylglyoxal concentration increased significantly; defects in growth, differentiation, and virulence were observed; and G2-phase arrest was induced.  相似文献   

3.
4.
Trehalose phosphorylase (EC 2.4.1.64) from Agaricus bisporus was purified for the first time from a fungus. This enzyme appears to play a key role in trehalose metabolism in A. bisporus since no trehalase or trehalose synthase activities could be detected in this fungus. Trehalose phosphorylase catalyzes the reversible reaction of degradation (phosphorolysis) and synthesis of trehalose. The native enzyme has a molecular weight of 240 kDa and consists of four identical 61-kDa subunits. The isoelectric point of the enzyme was pH 4.8. The optimum temperature for both enzyme reactions was 30°C. The optimum pH ranges for trehalose degradation and synthesis were 6.0–7.5 and 6.0–7.0, respectively. Trehalose degradation was inhibited by ATP and trehalose analogs, whereas the synthetic activity was inhibited by Pi (Ki=2.0 mM). The enzyme was highly specific towards trehalose, Pi, glucose and α-glucose-1-phosphate. The stoichiometry of the reaction between trehalose, Pi, glucose and α-glucose-1-phosphate was 1:1:1:1 (molar ratio). The Km values were 61, 4.7, 24 and 6.3 mM for trehalose, Pi, glucose and α-glucose-1-phosphate, respectively. Under physiological conditions, A. bisporus trehalose phosphorylase probably performs both synthesis and degradation of trehalose.  相似文献   

5.
Schwann cells (SCs) are the myelin forming cells in the peripheral nervous system, they play a key role in the pathology of various polyneuropathies and provide trophic support to axons via expression of various neurotrophic factors, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Ethanol (EtOH) adversely affected both SCs proliferation and myelin formation in culture. Resveratrol (Res) has been shown to regulate many cellular processes and to display multiple protective and therapeutic effects. Whether Res has protective effects on SCs with EtOH-induced toxicity is still unclear. The protective efficacy of Res on EtOH-treated SCs in vitro was investigated in the present study. Res improved cell viability of the EtOH-treated SCs. Hoechst 33342 staining and terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labeling analysis showed that the EtOH-induced apoptosis was inhibited by Res. The effects of Res were blocked by the 5′-adenosine monophosphate-activated protein kinase inhibitor Compound C and the silencing information regulator T1 inhibitor nicotinamide. Res could increase the mRNA and protein levels of BDNF and GDNF in the EtOH-treated SCs. However, the EtOH-induced increase of NGF in the SCs is inhibited by Res. The data from the present study indicate that Res protects SCs from EtOH-induced cell death and regulates the expression of neurotrophic factors. Res and its derivative may be effective for the treatment of neuropathic diseases induced by EtOH.  相似文献   

6.
Irina Grouneva 《BBA》2009,1787(7):929-5353
Intact cells of diatoms are characterized by a rapid diatoxanthin epoxidation during low light periods following high light illumination while epoxidation is severely restricted in phases of complete darkness. The present study shows that rapid diatoxanthin epoxidation is dependent on the availability of the cofactor of diatoxanthin epoxidase, NADPH, which cannot be generated in darkness due to the inactivity of PSI. In the diatom Phaeodactylum tricornutum, NADPH production during low light is dependent on PSII activity, and addition of DCMU consequently abolishes diatoxanthin epoxidation. In contrast to P. tricornutum, DCMU does not affect diatoxanthin epoxidation in Cyclotella meneghiniana, which shows the same rapid epoxidation in low light both in the absence or presence of DCMU. Measurements of the reduction state of the PQ pool and PSI activity indicate that, in the presence of DCMU, NADPH production in C. meneghiniana occurs via alternative electron transport, which includes electron donation from the chloroplast stroma to the PQ pool and, in a second step, from PQ to PSI. Similar electron flow to PQ is also observed during high light illumination of DCMU-treated P. tricornutum cells. In contrast to C. meneghiniana, the electrons are not directed to PSI, but most likely to a plastoquinone oxidase. This chlororespiratory electron transport leads to the establishment of an uncoupler-sensitive proton gradient in the presence of DCMU, which induces diadinoxanthin de-epoxidation and NPQ. In C. meneghiniana, electron flow to the plastoquinone oxidase is restricted, and consequently, diadinoxanthin de-epoxidation and NPQ is not observed after addition of DCMU.  相似文献   

7.
Echosides, isolated from Streptomyces sp. LZ35, represent a class of para-terphenyl natural products that display DNA topoisomerase I and IIα inhibitory activities. By analyzing the genome draft of strain LZ35, the ech gene cluster was identified to be responsible for the biosynthesis of echosides, which was further confirmed by gene disruption and HPLC analysis. Meanwhile, the biosynthetic pathway for echosides was proposed. Furthermore, the echA-gene, encoding a tri-domain nonribosomal peptide synthetase (NRPS)-like enzyme, was identified as a polyporic acid synthetase and biochemically characterized in vitro. This is the first study to our knowledge on the biochemical characterization of an Actinobacteria quinone synthetase, which accepts phenylpyruvic acid as a native substrate. Therefore, our results may help investigate the function of other NRPS-like enzymes in Actinobacteria.  相似文献   

8.
To investigate the role of oxidative stress and/or mitochondrial impairment in the occurrence of acute kidney injury (AKI) during sepsis, we developed a sepsis-induced in vitro model using proximal tubular epithelial cells exposed to a bacterial endotoxin (lipopolysaccharide, LPS). This investigation has provided key features on the relationship between oxidative stress and mitochondrial respiratory chain activity defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号