首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

The human lung is exposed to a large number of airborne pathogens as a result of the daily inhalation of 10,000 liters of air. Innate immunity is thus essential to defend the lungs against these pathogens. This defense is mediated in part through the recognition of specific microbial ligands by Toll-like receptors (TLR) of which there are at least 10 in humans. Pseudomonas aeruginosa is the main pathogen that infects the lungs of cystic fibrosis patients. Based on whole animal experiments, using TLR knockout mice, the control of this bacterium is believed to occur by the recognition of LPS and flagellin by TLRs 2,4 and 5, respectively.

Methodology/Principal Findings

In the present study, we investigated in vitro the role of these same TLR and ligands, in alveolar macrophage (AM) and epithelial cell (EC) activation. Cellular responses to P. aeruginosa was evaluated by measuring KC, TNF-α, IL-6 and G-CSF secretion, four different markers of the innate immune response. AM and EC from WT and TLR2, 4, 5 and MyD88 knockout mice for were stimulated with the wild-type P. aeruginosa or with a mutant devoid of flagellin production.

Conclusions/Significance

The results clearly demonstrate that only two ligand/receptor pairs are necessary for the induction of KC, TNF-α, and IL-6 synthesis by P. aeruginosa-activated cells, i.e. TLR2,4/LPS and TLR5/flagellin. Either ligand/receptor pair is sufficient to sense the bacterium and to trigger cell activation, and when both are missing lung EC and AM are unable to produce such a response as were cells from MyD88−/− mice.  相似文献   

2.
3.

Background

Previous studies by us and other have provided evidence that leukocytes play a critical role in the development of diabetic retinopathy, suggesting a possible role of the innate immune system in development of the retinopathy. Since MyD88 is a convergence point for signaling pathways of the innate immune system (including Toll-Like Receptors (TLRs) and interleukin-1ß (IL-1ß)), the purpose of this study was to assess the role of MyD88 and its dependent pathways on abnormalities that develop in retina and white blood cells related to diabetic retinopathy.

Methods

C57BL/6J mice were made diabetic with streptozotocin. Chimeric mice were generated in which MyD88-dependent pathways were deleted from bone marrow-derived only. Mice were sacrificed at 2 mos of diabetes for assessment of, leukostasis, albumin accumulation in neural retina, leukocyte-mediated killing of retinal endothelial cells, and cytokine/chemokine generation by retinas of diabetic mice in response to TLR agonists,

Results

IL-6 and CXCL1 were generated in retinas from diabetic (but not nondiabetic mice) following incubation with Pam3CysK/TLR2, but incubation with other TLR ligands or IL-1ß did not induce cytokine production in retinas from nondiabetic or diabetic mice. Diabetes-induced abnormalities (leukostasis, ICAM-1 expression on the luminal surface of the vascular endothelium, retinal superoxide generation) were significantly inhibited by removing either MyD88 or the signaling pathways regulated by it (TLRs 2 and 4, and IL-1ß) from bone marrow-derived cells only. Leukocyte-mediated killing of endothelial cells tended to be decreased in the marrow-derived cells lacking TLR2/4, but the killing was significantly exacerbated if the marrow cells lacked MyD88 or the receptor for IL-1ß (IL-1ßr).

Conclusions

MyD88-dependent pathways play an important role in the development of diabetes-induced inflammation in the retina, and inhibition of MyD88 might be a novel target to inhibit early abnormalities of diabetic retinopathy and other complications of diabetes.  相似文献   

4.
Toll-like receptors (TLRs) mediate responses to pathogen-associated molecules as part of the vertebrate innate immune response to infection. Receptor dimerization is coupled to downstream signal transduction by the recruitment of a post-receptor complex containing the adaptor protein MyD88 and the IRAK protein kinases. In this work, we show that the death domains of human MyD88 and IRAK-4 assemble into closed complexes having unusual stoichiometries of 7:4 and 8:4, the Myddosome. Formation of the Myddosome is likely to be a key event for TLR4 signaling in vivo as we show here that pathway activation requires that the receptors cluster into lipid rafts. Taken together, these findings indicate that TLR activation causes the formation of a highly oligomeric signaling platform analogous to the death-inducing signaling complex of the Fas receptor pathway.In vertebrates, the initial responses of innate immunity are mediated by a family of pattern recognition receptors, which are able to sense the presence of a variety of microbial products such as lipids and non-self nucleic acid (1). One important family of pattern recognition receptors is the Toll-like receptors (TLRs)4 that are expressed by many immune system cell types such as macrophages and dendritic cells. TLRs are class one transmembrane receptors that are activated by a process of stimulus-induced dimerization of their extracellular domains. This in turn causes the cytoplasmic Toll/interleukin-1 (IL-1) domains (TIRs) to dimerize, forming a scaffold for the recruitment of downstream signaling components (2). TLRs use five signaling adaptor proteins to couple receptor activation to downstream signal transduction (3). All of these adaptors have TIRs and engage with the activated TLRs by TIR-TIR interactions.One of the adaptor proteins, MyD88, is of particular importance because it is used by all but one of the TLRs as well as by the IL-1 and interferon-γ receptors. MyD88-deficient mice have profoundly impaired innate immune responses and are susceptible to a wide range of infectious diseases. The MyD88 sequence is tripartite and is comprised of a death domain (DD) at the N terminus, a short (40-amino-acid) intermediate domain (ID) of unknown structure, and a C-terminal TIR. Evidence from yeast two-hybrid experiments suggests that MyD88 can self-associate with contacts in both the DD and the TIR (4). The current view of post-receptor signal transduction is that two MyD88 TIR domains bind to the activated TLR, and this enables the recruitment of the protein kinases IRAK-4 and IRAK-1 (5). These kinases have DDs at their N termini, and both are recruited into a complex with MyD88 after signal initiation. It appears that IRAK-4 is recruited first, and this binding requires the ID of MyD88 (6, 7). Thus MyD88s, a splice variant that lacks the ID, down-regulates TLR signaling and cannot recruit IRAK-4 into the post-receptor complex. In contrast, IRAK-1 interacts with MyD88s presumably by DD-DD rather than DD-ID interactions. The next step in the signaling process is for IRAK-4 to phosphorylate IRAK-1, causing activation of the latter and hyper-autophosphorylation. IRAK-1 then dissociates from the complex and interacts with the ubiquitin-protein isopeptide ligase (E3) TRAF6 (8, 9).DDs together with the structurally related caspase recruitment domains (CARDs) and death effector domains (DEDs) form the death domain superfamily (10). There are 215 proteins encoded by the human genome that are predicted to have this fold, and they are widely used in cellular signaling including the TLR and apoptotic pathways. Structurally, DDs contain six antiparallel α-helices, and they are predominantly involved in protein-protein interactions with other DDs. Three modes of DD-DD interaction, types 1, 2, and 3 (10), have been characterized and are illustrated by the structures of the Drosophila Tube-Pelle heterodimer (11), the Procaspase-9 homodimer (12), and most remarkably, by the PIDDosome (13). In the latter case, PIDD, RAIDD, and Caspase-2 form a complex, which results in the proximity-induced activation of Caspase-2 protease activity, which in turn leads to cytochrome c release and apoptotic cell death. The DDs of PIDD and RAIDD interact to produce a complex having a stoichiometry of 5:7, and the subunits are arranged in three layers with five PIDDs, five RAIDDs, and then two RAIDDs. The structure is stabilized by 25 DD-DD contacts of which six are type 2, nine are type 1, and 10 are type 3.In this study, we report that like PIDD and RAIDD, the DDs of human MyD88 and IRAK-4 assemble into defined structures having stoichiometries of 7:4 and 8:4. We propose that the structure has two layers with a ring of seven or eight MyD88 subunits and a second layer of four IRAK-4 subunits. The formation of these higher order assemblies provides insight into the complex regulation and cross-talk observed in the TLR signaling pathways.  相似文献   

5.

Introduction

The danger signal HMGB1 is released from ischemic myocytes, and mediates angiogenesis in the setting of hindlimb ischemia. HMGB1 is a ligand for innate immune receptors TLR2 and TLR4. While both TLR2 and TLR4 signal through myeloid differentiation factor 88 (MyD88), TLR4 also uniquely signals through TIR-domain-containing adapter-inducing interferon-β (TRIF). We hypothesize that TLR2 and TLR4 mediate ischemic myocyte regeneration and angiogenesis in a manner that is dependent on MyD88 signaling.

Methods

Mice deficient in TLR2, TLR4, MyD88 and TRIF underwent femoral artery ligation in the right hindlimb. Laser Doppler perfusion imaging was used to assess the initial degree of ischemia and the extent of perfusion recovery. Muscle regeneration, necrosis and fat replacement at 2 weeks post-ligation were assessed histologically and vascular density was quantified by immunostaining. In vitro, endothelial tube formation was evaluated in matrigel in the setting of TLR2 and TLR4 antagonism.

Results

While control and TLR4 KO mice demonstrated prominent muscle regeneration, both TLR2 KO and TRIF KO mice exhibited marked necrosis with significant inflammatory cell infiltrate. However, MyD88 KO mice had a minimal response to the ischemic insult with little evidence of injury. This observation could not be explained by differences in perfusion recovery which was similar at two weeks in all the strains of mice. TLR2 KO mice demonstrated abnormal vessel morphology compared to other strains and impaired tube formation in vitro.

Discussion

TLR2 and TRIF signaling are necessary for muscle regeneration after ischemia while MyD88 may instead mediate muscle injury. The absence of TLR4 did not affect muscle responses to ischemia. TLR4 may mediate inflammatory responses through MyD88 that are exaggerated in the absence of TLR2. Additionally, the actions of TLR4 through TRIF may promote regenerative responses that are required for recovery from muscle ischemia.  相似文献   

6.

Background

Toll like receptors (TLRs) sense the intestinal microbiota and regulate the innate immune response. A dysregulation of TLRs function participates into intestinal inflammation. Farnesoid X Receptor (FXR) is a nuclear receptor and bile acid sensor highly expressed in entero-hepatic tissues. FXR regulates lipid metabolism and innate immunity.

Methodology/Principal Findings

In this study we have investigated whether FXR gene expression/function in the intestine is modulated by TLRs. We found that in human monocytes activation of membrane TLRs (i.e. TLR2, 4, 5 and 6) downregulates, while activation of intracellular TLRs (i.e. TLR3, 7, 8 and 9) upregulates the expression of FXR and its target gene SHP, small heterodimer partner. This effect was TLR9-dependent and TNFα independent. Intestinal inflammation induced in mice by TNBS downregulates the intestinal expression of FXR in a TLR9-dependent manner. Protection against TNBS colitis by CpG, a TLR-9 ligand, was lost in FXR−/− mice. In contrast, activation of FXR rescued TLR9−/− and MyD88−/− mice from colitis. A putative IRF7 response element was detected in the FXR promoter and its functional characterization revealed that IRF7 is recruited on the FXR promoter under TLR9 stimulation.

Conclusions/Significance

Intestinal expression of FXR is selectively modulated by TLR9. In addition to its role in regulating type-I interferons and innate antiviral immunity, IRF-7 a TLR9-dependent factor, regulates the expression of FXR, linking microbiota-sensing receptors to host''s immune and metabolic signaling.  相似文献   

7.

Background

Higher-order self-assembly of proteins, or “prion-like” polymerisation, is now emerging as a simple and robust mechanism for signal amplification, in particular within the innate immune system, where the recognition of pathogens or danger-associated molecular patterns needs to trigger a strong, binary response within cells. MyD88, an important adaptor protein downstream of TLRs, is one of the most recent candidates for involvement in signalling by higher order self-assembly. In this new light, we set out to re-interpret the role of polymerisation in MyD88-related diseases and study the impact of disease-associated point mutations L93P, R196C, and L252P/L265P at the molecular level.

Results

We first developed new in vitro strategies to characterise the behaviour of polymerising, full-length MyD88 at physiological levels. To this end, we used single-molecule fluorescence fluctuation spectroscopy coupled to a eukaryotic cell-free protein expression system. We were then able to explore the polymerisation propensity of full-length MyD88, at low protein concentration and without purification, and compare it to the behaviours of the isolated TIR domain and death domain that have been shown to have self-assembly properties on their own. These experiments demonstrate that the presence of both domains is required to cooperatively lead to efficient polymerisation of the protein. We then characterised three pathological mutants of MyD88.

Conclusion

We discovered that all mutations block the ability of MyD88 to polymerise fully. Interestingly, we show that, in contrast to L93P and R196C, L252P is a gain-of-function mutation, which allows the MyD88 mutant to form extremely stable oligomers, even at low nanomolar concentrations. Thus, our results shed new light on the digital “all-or-none” responses by the myddosomes and the behaviour of the oncogenic mutations of MyD88.
  相似文献   

8.
Toll-like receptors sense pathogen-associated molecular patterns (e.g., lipopolysaccharides) and trigger gene-expression changes that ultimately eradicate the invading microbes.Toll-like receptors (TLRs) are protective immune sentries that sense pathogen-associated molecular patterns (PAMPs) such as unmethylated double-stranded DNA (CpG), single-stranded RNA (ssRNA), lipoproteins, lipopolysaccharide (LPS), and flagellin. In innate immune myeloid cells, TLRs induce the secretion of inflammatory cytokines (Newton and Dixit 2012), thereby engaging lymphocytes to mount an adaptive, antigen-specific immune response (see Fig. 1) that ultimately eradicates the invading microbes (Kawai and Akira 2010).Open in a separate windowFigure 1.TLR signaling (simplified view).Identification of TLR innate immune function began with the discovery that Drosophila mutants in the Toll gene are highly susceptible to fungal infection (Lemaitre et al. 1996). This was soon followed by identification of a human Toll homolog, now known as TLR4 (Medzhitov et al. 1997). To date, 10 TLR family members have been identified in humans, and at least 13 are present in mice. All TLRs consist of an amino-terminal domain, characterized by multiple leucine-rich repeats, and a carboxy-terminal TIR domain that interacts with TIR-containing adaptors. Nucleic acid–sensing TLRs (TLR3, TLR7, TLR8, and TLR9) are localized within endosomal compartments, whereas the other TLRs reside at the plasma membrane (Blasius and Beutler 2010; McGettrick and O’Neill 2010). Trafficking of most TLRs from the endoplasmic reticulum (ER) to either the plasma membrane or endolysosomes is orchestrated by ER-resident proteins such as UNC93B (for TLR3, TLR7, TLR8, and TLR9) and PRAT4A (for TLR1, TLR2, TLR4, TLR7, and TLR9) (Blasius and Beutler 2010). Once in the endolysosomes, TLR3, TLR7, and TLR9 are subject to stepwise proteolytic cleavage, which is required for ligand binding and signaling (Barton and Kagan 2009). For some TLRs, ligand binding is facilitated by coreceptors, including CD14 and MD2.Following ligand engagement, the cytoplasmic TIR domains of the TLRs recruit the signaling adaptors MyD88, TIRAP, TRAM, and/or TRIF (see Fig. 2). Depending on the nature of the adaptor that is used, various kinases (IRAK4, IRAK1, IRAK2, TBK1, and IKKε) and ubiquitin ligases (TRAF6 and pellino 1) are recruited and activated, culminating in the engagement of the NF-κB, type I interferon, p38 MAP kinase (MAPK), and JNK MAPK pathways (Kawai and Akira 2010; Morrison 2012). TRAF6 is modified by K63-linked autoubiquitylation, which enables the recruitment of IκB kinase (IKK) through a ubiquitin-binding domain of the IKKγ (also known as NEMO) subunit. In addition, a ubiquitin-binding domain of TAB2 recognizes ubiquitylated TRAF6, causing activation of the associated TAK1 kinase, which then phosphorylates the IKKβ subunit. Pellino 1 can modify IRAK1 with K63-linked ubiquitin, allowing IRAK1 to recruit IKK directly. TLR4 signaling via the TRIF adaptor protein leads to K63-linked polyubiquitylation of TRAF3, thereby promoting the type I interferon response via interferon regulatory factor (IRFs) (Hacker et al. 2011). Alternatively, TLR4 signaling via MyD88 leads to the activation of TRAF6, which modifies cIAP1 or cIAP2 with K63-linked polyubiquitin (Hacker et al. 2011). The cIAPs are thereby activated to modify TRAF3 with K48-linked polyubiquitin, causing its proteasomal degradation. This allows a TRAF6–TAK1 complex to activate the p38 MAPK pathway and promote inflammatory cytokine production (Hacker et al. 2011). TLR signaling is turned off by various negative regulators: IRAK-M and MyD88 short (MyD88s), which antagonize IRAK1 activation; FADD, which antagonizes MyD88 or IRAKs; SHP1 and SHP2, which dephosphorylate IRAK1 and TBK1, respectively; and A20, which deubiquitylates TRAF6 and IKK (Flannery and Bowie 2010; Kawai and Akira 2010).Open in a separate windowFigure 2.TLR signaling. (Adapted with kind permission of Cell Signaling Technology [http://www.cellsignal.com].)Deregulation of the TLR signaling cascade causes several human diseases. Patients with inherited deficiencies of MyD88, IRAK4, UNC93B1, or TLR3 are susceptible to recurrent bacterial or viral infections (Casanova et al. 2011). Chronic TLR7 and/or TLR9 activation in autoreactive B cells, in contrast, underlies systemic autoimmune diseases (Green and Marshak-Rothstein 2011). Furthermore, oncogenic activating mutations of MyD88 occur frequently in the activated B-cell-like subtype of diffuse large B-cell lymphoma and in other B-cell malignancies (Ngo et al. 2011). Inhibitors of various TLRs or their associated kinases are currently being developed for autoimmune or inflammatory diseases and also hold promise for the treatment of B-cell malignancies with oncogenic MyD88 mutations. Many TLR7 and TLR9 agonists are currently in clinical trials as adjuvants to boost host antitumor responses in cancer patients (Hennessy et al. 2010).  相似文献   

9.
10.

Background

Inflammatory bowel diseases (IBDs) appear to be modulated by the interaction of pathogen-associated molecular patterns (PAMPs) derived from intestinal bacteria with their respective innate immune receptors, including Toll-like receptors (TLRs). We aimed to establish if intestinal concentrations of proinflammatory bacterial ligands of TLR2, TLR4, or TLR5 may be altered in murine IBD models, and to characterize which of the major bacterial groups may contribute to each signal.

Methodology/Principal Findings

PAMPs specific for TLR2 (lipopeptide equivalents), TLR4 (lipopolysaccharide equivalents), and TLR5 (flagellin equivalents) in human and murine fecal and intestinal samples were quantified using HEK-293 cells transfected with respective TLRs and calibrated with defined standard PAMPs. The induction of colitis in mice by dextran-sodium-sulphate treatment significantly increased colonic lipopeptide (fourfold) and LPS equivalent (550-fold) concentrations, while flagellin equivalent concentrations remained similar. The induction of ileitis by oral infection with Toxoplasma gondii dramatically increased ileal concentrations of lipopeptide (370-fold), LPS (3,300-fold), and flagellin equivalents (38-fold), all P<0.01. Analysis of representative strains of the major bacterial groups of the human intestine revealed that enterobacterial species are likely to be more significant contributors of soluble TLR2 and TLR4 stimulants to the intestinal milieu than Bacteroides species or Gram-positive Firmicutes.

Conclusions/Significance

We conclude that the induction of colitis or ileitis in mice is associated with significant disease-specific alterations to the PAMP profile of the gut microbiota.  相似文献   

11.

Background

Bacterial and viral infections are known to promote airway hyperresponsiveness (AHR) in asthmatic patients. The mechanism behind this reaction is poorly understood, but pattern recognizing Toll-like receptors (TLRs) have recently been suggested to play a role.

Materials and Methods

To explore the relation between infection-induced airway inflammation and the development of AHR, poly(I:C) activating TLR3 and LPS triggering TLR4, were chosen to represent viral and bacterial induced interactions, respectively. Female BALB/c or MyD88-deficient C57BL/6 mice were treated intranasally with either poly(I:C), LPS or PBS (vehicle for the control group), once a day, during 4 consecutive days.

Results

When methacholine challenge was performed on day 5, BALB/c mice responded with an increase in airway resistance. The maximal resistance was higher in the poly(I:C) and LPS treated groups than among the controls, indicating development of AHR in response to repeated TLR activation. The proportion of lymphocytes in broncheoalveolar lavage fluid (BALF) increased after poly(I:C) treatment whereas LPS enhanced the amount of neutrophils. A similar cellular pattern was seen in lung tissue. Analysis of 21 inflammatory mediators in BALF revealed that the TLR response was receptor-specific. MyD88-deficient C57BL/6 mice responded to poly (I:C) with an influx of lymphocytes, whereas LPS caused no inflammation.

Conclusion

In vivo activation of TLR3 and TLR4 in BALB/c mice both caused AHR in conjunction with a local inflammatory reaction. The AHR appeared to be identical regardless of which TLR that was activated, whereas the inflammation exhibited a receptor specific profile in terms of both recruited cells and inflammatory mediators. The inflammatory response caused by LPS appeared to be dependent on MyD88 pathway. Altogether the presented data indicate that the development of AHR and the induction of local inflammation might be the result of two parallel events, rather than one leading to another.  相似文献   

12.

Introduction

β2→1-fructans are dietary fibers. Main objectives of this study were 1) to demonstrate direct signalling of β2→1-fructans on immune cells, 2) to study whether this is mediated by the pattern recognition receptors Toll-like receptors (TLRs) and nucleotide-binding oligomerisation domain-containing proteins (NODs), and 3) to relate the observed effects to the chain length differences in β2→1-fructans.

Methods

Four different β2→1-fructan formulations were characterised for their chain length profile. Human peripheral blood mononuclear cells (PBMCs) were stimulated in vitro with β2→1-fructans, and production of IL-1Ra, IL-1β, IL-6, IL-10, IL-12p70, and TNF-α was analysed. Reporter cells for TLRs and NODs were incubated with β2→1-fructans and analysed for NF-κB/AP-1 activation.

Results

Cytokine production in human PBMCs was dose- and chain length-dependent. Strikingly, short chain enriched β2→1-fructans induced a regulatory cytokine balance compared to long chain enriched β2→1-fructans as measured by IL-10/IL-12 ratios. Activation of reporter cells showed that signalling was highly dependent on TLRs and their adapter, myeloid differentiation primary response protein 88 (MyD88). In human embryonic kidney reporter cells, TLR2 was prominently activated, while TLR4, 5, 7, 8, and NOD2 were mildly activated.

Conclusions

β2→1-fructans possess direct signalling capacity on human immune cells. By activating primarily TLR2, and to a lesser extent TLR4, 5, 7, 8, and NOD2, β2→1-fructan stimulation results in NF-κB/AP-1 activation. Chain length of β2→1-fructans is important for the induced activation pattern and IL-10/IL-12 ratios.  相似文献   

13.

Background

The milk protein αS1-casein was recently reported to induce secretion of proinflammatory cytokines via Toll-like receptor 4 (TLR4). In this study, αS1-casein was identified as binder of theTLR4 ecto domain.

Methods

IL-8 secretion after stimulation of TLR4/MD2 (myeloid differentiation factor 2)/CD14 (cluster of differentiation 14)-transfected HEK293 cells (TLR4+) and Mono Mac 6 cells (MM6) with recombinant αS1-casein, or LPS as control was monitored. Binding of αS1-casein to TLR4 was quantified by microscale thermophoresis (MST).

Results

αS1-casein induced secretion of IL-8 in TLR4+ cells and in MM6 cells with a six-times higher final IL-8 concentration in supernatants. IL-8 secretion was inhibited by intracellular TLR4-domain antagonist TAK-242 with an IC50-value of 259.6?nM, by ecto-domain TLR4 antagonistic mianserin with 10–51?μM and by anti-CD14-IgA. The binding constants (KD) of αS1-casein to the TLR4, MD2, and CD14 were 2.8?μM, 0.3?μM and 2.7?μM, respectively. Finally, αS1-casein showed a higher affinity to TLR4/MD2 (KD: 2.2?μM) compared to LPS (KD: 8.2?μM).

Conclusion

Human αS1-casein induced proinflammatory effects are dependent upon binding to the TLR4 ectodomain and the presence of CD14. αS1-casein displayed stronger TLR4 agonistic activity than LPS via a different mode of action.

General significance

Breast milk protein αS1-casein is a proinflammatory cytokine.  相似文献   

14.
MyD88 couples the activation of the Toll-like receptors and interleukin-1 receptor superfamily with intracellular signaling pathways. Upon ligand binding, activated receptors recruit MyD88 via its Toll-interleukin-1 receptor domain. MyD88 then allows the recruitment of the interleukin-1 receptor-associated kinases (IRAKs). We performed a site-directed mutagenesis of MyD88 residues, conserved in death domains of the homologous FADD and Pelle proteins, and analyzed the effect of the mutations on MyD88 signaling. Our studies revealed that mutation of residues 52 (MyD88E52A) and 58 (MyD88Y58A) impaired recruitment of both IRAK1 and IRAK4, whereas mutation of residue 95 (MyD88K95A) only affected IRAK4 recruitment. Since all MyD88 mutants were defective in signaling, recruitment of both IRAKs appeared necessary for activation of the pathway. Moreover, overexpression of a green fluorescent protein (GFP)-tagged mini-MyD88 protein (GFP-MyD88-(27–72)), comprising the Glu52 and Tyr58 residues, interfered with recruitment of both IRAK1 and IRAK4 by MyD88 and suppressed NF-κB activation by the interleukin-1 receptor but not by the MyD88-independent TLR3. GFP-MyD88-(27–72) exerted its effect by titrating IRAK1 and suppressing IRAK1-dependent NF-κB activation. These experiments identify novel residues of MyD88 that are crucially involved in the recruitment of IRAK1 and IRAK4 and in downstream propagation of MyD88 signaling.MyD88 was first discovered during studies addressing the differentiation of mouse myeloid cells in response to growth-inhibitory stimuli (1). Subsequent investigations revealed that MyD88 possesses a modular organization (2), with an amino-terminal death domain (DD),3 found in proteins involved in cell death (3, 4), and a carboxyl-terminal Toll-interleukin-1 receptor (TIR) domain, present in the intracytoplasmic tail of receptors belonging to the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily (5). MyD88 also has an intermediate domain (ID) that is crucial in TLR signaling due to its interaction with IRAK4 (6). The role of MyD88 as a signal transducer was first shown in the pathways triggered by the activation of IL-1R (7, 8) and TLR4 (9). Further studies showed that all TLRs, with the sole exception of TLR3, and the IL-1R family utilize the adaptor protein MyD88 to initiate their signaling pathway (10).By virtue of its modular organization, MyD88 critically bridges activated receptor complexes to downstream adaptors/effectors. Upon activation, MyD88 is recruited through its TIR domain by the homologous domain of the activated TLR/IL-1R (11, 12). MyD88, in turn, has been shown to interact with a family of downstream kinases, namely IRAK1 (13), IRAK2 (7), IRAK-M (15), and IRAK4 (16), through the interaction of its DD with the respective DDs present in the amino-terminal region of IRAKs (17). At this stage, this multimeric complex is competent to elicit the propagation of the signal downstream of the receptor(s). Although MyD88 recruits IRAK-1 via DD-DD interactions, its recruitment of IRAK-4 appears to be rather unusual. Burns et al. (6) first demonstrated that an alternatively spliced variant of MyD88 (MyD88s), lacking the ID domain, failed to interact with IRAK-4, suggesting that residues located in both the DD and ID of MyD88 are crucially involved in the recruitment of IRAK-4. Nevertheless, no information is available on the specific residues in the DD in MyD88 required for its interaction with either IRAK1 or IRAK4.The DD was initially defined as the region of homology between the cytoplasmic tails of the FAS/Apo1/CD95 and TNF receptors required for their induction of cytotoxic signaling (18, 19). In analogy with other DD-containing proteins, this domain in MyD88 is also involved in the formation of homomeric and heteromeric interactions. Herein, we have undertaken an alanine-scanning mutational analysis to identify amino acids that are required for downstream signaling and might participate in the homomeric and heteromeric interactions. Our studies revealed that MyD88E52A and MyD88Y58A mutants are strongly impaired in the recruitment of both IRAK1 and IRAK4, whereas the MyD88K95A mutant is deficient in recruiting IRAK4. These findings identify residues within the DD of MyD88 crucially involved in the formation of higher order complexes containing IRAK1 and IRAK4 and required for the propagation of the TLR/IL1-R signaling pathways.  相似文献   

15.

Background

Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR) 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88) is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD)-induced obesity.

Methodology/Principal Findings

In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP), which were linked to the onset of severe diabetes. On the other hand, TNF-α would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-α level was attenuated in MyD88-deficient mice fed with HFD.

Conclusions/Significance

The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.  相似文献   

16.
17.

Background

The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Toll-like receptors (TLRs) are one of the receptor types of the body''s innate immune system. The function of the TLR system and the mechanisms by which it functions in renal aging remain unclear. In the present study, we, for the first time, systematically investigated the role of the TLR system and the inflammation responses activated by TLRs during kidney aging.

Methods

We used western blot and immunohistochemistry to systematically analyze the changes in the expression and activation of the endogenous TLR ligands HSP70 and HMGB1, the TLRs (TLR1–TLR11), their downstream signaling pathway molecules MyD88 and Phospho-IRF-3, and the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα (NF-κB inhibition factor α), NF-κBp65, and Phospho-NF-κBp65 (activated NF-κB p65) in the kidneys of 3 months old (youth group), 12 months old (middle age group), and 24 months old (elderly group) rats. We used RT-qPCR to detect the mRNA expression changes of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b in the rat renal tissues of the various age groups.

Results

We found that during kidney aging, the HSP70 and HMGB1 expression levels were significantly increased, and the expression levels of TLR1, 2, 3, 4, 5, and 11 and their downstream signaling pathway molecules MyD88 and Phospho-IRF-3 were markedly elevated. Further studies have shown that in the aging kidneys, the expression levels of the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα, NF-κBp65, and Phospho-NF-κBp65 were obviously increased, and those of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b were significantly upregulated.

Conclusions

These results showed that the TLR system might play an important role during the kidney aging process maybe by activating the NF-κB signaling pathway and promoting the high expression of inflammation factors.  相似文献   

18.

Background

Toll-like receptors (TLRs) have a central role in the recognition of pathogens and the initiation of the innate immune response. Myeloid differentiation primary-response gene 88 (MyD88) and TIR-domain-containing adaptor protein inducing IFNβ (TRIF) are regarded as the key signaling adaptor proteins for TLRs. Melioidosis, which is endemic in SE-Asia, is a severe infection caused by the gram-negative bacterium Burkholderia pseudomallei. We here aimed to characterize the role of MyD88 and TRIF in host defense against melioidosis.

Methodology and Principal Findings

First, we found that MyD88, but not TRIF, deficient whole blood leukocytes released less TNFα upon stimulation with B. pseudomallei compared to wild-type (WT) cells. Thereafter we inoculated MyD88 knock-out (KO), TRIF mutant and WT mice intranasally with B. pseudomallei and found that MyD88 KO, but not TRIF mutant mice demonstrated a strongly accelerated lethality, which was accompanied by significantly increased bacterial loads in lungs, liver and blood, and grossly enhanced liver damage compared to WT mice. The decreased bacterial clearance capacity of MyD88 KO mice was accompanied by a markedly reduced early pulmonary neutrophil recruitment and a diminished activation of neutrophils after infection with B. pseudomallei. MyD88 KO leukocytes displayed an unaltered capacity to phagocytose and kill B. pseudomallei in vitro.

Conclusions

MyD88 dependent signaling, but not TRIF dependent signaling, contributes to a protective host response against B. pseudomallei at least in part by causing early neutrophil recruitment towards the primary site of infection.  相似文献   

19.
20.
Toll-like receptors (TLRs) associate with adaptor molecules (MyD88, Mal/TIRAP, TRAM, and TRIF) to mediate signaling of host-microbial interaction. For instance, TLR4 utilizes the combination of both Mal/TIRAP-MyD88 (MyD88-dependent pathway) and TRAM-TRIF (MyD88-independent pathway). However, TLR5, the specific receptor for flagellin, is known to utilize only MyD88 to elicit inflammatory responses, and an involvement of other adaptor molecules has not been suggested in TLR5-dependent signaling. Here, we found that TRIF is involved in mediating TLR5-induced nuclear factor κB (NFκB) and mitogen-activated protein kinases (MAPKs), specifically JNK1/2 and ERK1/2, activation in intestinal epithelial cells. TLR5 activation by flagellin permits the physical interaction between TLR5 and TRIF in human colonic epithelial cells (NCM460), whereas TLR5 does not interact with TRAM upon flagellin stimulation. Both primary intestinal epithelial cells from TRIF-KO mice and TRIF-silenced NCM460 cells significantly reduced flagellin-induced NFκB (p105 and p65), JNK1/2, and ERK1/2 activation compared with control cells. However, p38 activation by flagellin was preserved in these TRIF-deficient cells. TRIF-KO intestinal epithelial cells exhibited substantially reduced inflammatory cytokine (keratinocyte-derived cytokine, macrophage inflammatory protein 3α, and IL-6) expression upon flagellin, whereas control cells from TRIF-WT mice showed robust cytokine expression by flagellin. Compare with TRIF-WT mice, TRIF-KO mice were resistant to in vivo intestinal inflammatory responses: flagellin-mediated exacerbation of colonic inflammation and dextran sulfate sodium-induced experimental colitis. We conclude that in addition to MyD88, TRIF mediates TLR5-dependent responses and, thereby regulates inflammatory responses elicited by flagellin/TLR5 engagement. Our findings suggest an important role of TRIF in regulating host-microbial communication via TLR5 in the gut epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号