首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitor-of-apoptosis protein (IAP) inhibitors have been reported to synergistically reduce cell viability in combination with a variety of chemotherapeutic drugs via targeted cellular IAP (cIAP) depletion. Here, we found that cIAP silencing sensitised colorectal cancer (CRC) cells to selenite-induced apoptosis. Upon selenite treatment, the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed, leading to the formation of the death-inducing complex and subsequent caspase-8 activation. Although the ubiquitinases cIAP1 and cIAP2 were significantly downregulated after a 24-h selenite treatment, cylindromatosis (CYLD) deubiquitinase protein levels were marginally upregulated. Chromatin immunoprecipitation assays revealed that lymphoid enhancer factor-1 (LEF1) dissociated from the CYLD promoter upon selenite treatment, thus abolishing suppression of CYLD gene expression. We corroborated these findings in a CRC xenograft animal model using immunohistochemistry. Collectively, our findings demonstrate that selenite caused CYLD upregulation via LEF1 and cIAP downregulation, both of which contribute to the degradation of ubiquitin chains on RIP1 and subsequent caspase-8 activation and apoptosis. Importantly, our results identify a LEF1-binding site in the CYLD promoter as a potential target for combinational therapy as an alternative to cIAPs.  相似文献   

2.
Sequestosome 1 (SQSTM1)/p62 is an interacting partner of the atypical protein kinase C zeta/iota and serves as a scaffold for cell signaling and ubiquitin binding, which is critical for several cell functions in vivo such as osteoclastogenesis, adipogenesis, and T cell activation. Here we report that in neurons of p62-/- mouse brain there is a detectable increase in ubiquitin staining paralleled by accumulation of insoluble ubiquitinated proteins. The absolute amount of each ubiquitin chain linkage measured by quantitative mass spectrometry demonstrated hyperaccumulation of Lys63 chains in the insoluble fraction recovered from the brain of p62-/- mice, which correlated with increased levels of Lys63-ubiquitinated TrkA receptor. The increase in Lys63 chains was attributed in part to diminished activity of the TRAF6-interacting the Lys63-deubiquitinating enzyme (DUB), cylindromatosis tumor suppressor (CYLD). The interaction of CYLD with TRAF6 was dependent upon p62, thus defining a mechanism that accounts for decreased activity of CYLD in the absence of p62. These findings reveal that p62 serves as an adapter for the formation of this complex, thereby regulating the DUB activity of CYLD by TRAF6 interaction. Thus, p62 has a bifunctional role in regulation of an E3 ubiquitin-protein ligase, TRAF6, and a DUB, CYLD, to balance the turnover of Lys63-polyubiquitinated proteins such as TrkA.  相似文献   

3.
At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63‐linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48‐linked ubiquitin chains. We also examined the specificity of various deubiquitinases (DUBs) and ubiquitin‐binding domains (UBDs). All analysed DUBs, except CYLD, cleave linear chains less efficiently compared with other chain types, or not at all. Likewise, UBDs can show chain specificity, and are able to select distinct linkages from a ubiquitin chain mixture. We found that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO (NF‐κB essential modifier) binds to linear chains exclusively, whereas the NZF (Npl4 zinc finger) domain of TAB2 (TAK1 binding protein 2) is Lys 63 specific. Our results highlight remarkable specificity determinants within the ubiquitin system.  相似文献   

4.
The tumor suppressor CYLD antagonizes NF-kappaB and JNK signaling by disassembly of Lys63-linked ubiquitin chains synthesized in response to cytokine stimulation. Here we describe the crystal structure of the CYLD USP domain, revealing a distinctive architecture that provides molecular insights into its specificity toward Lys63-linked polyubiquitin. We identify regions of the USP domain responsible for this specificity and demonstrate endodeubiquitinase activity toward such chains. Pathogenic truncations of the CYLD C terminus, associated with the hypertrophic skin tumor cylindromatosis, disrupt the USP domain, accounting for loss of CYLD catalytic activity. A small zinc-binding B box domain, similar in structure to other crossbrace Zn-binding folds--including the RING domain found in E3 ubiquitin ligases--is inserted within the globular core of the USP domain. Biochemical and functional characterization of the B box suggests a role as a protein-interaction module that contributes to determining the subcellular localization of CYLD.  相似文献   

5.
CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal differentiation in humans through the JNK signaling pathway. We have determined the requirement of CYLD for the maintenance of epidermal polarity, keratinocyte differentiation and apoptosis. We show that CYLD overexpression increases keratinocyte differentiation while CYLD loss of function impairs epidermal differentiation. In addition, we describe the important role of CYLD in the control of human non-melanoma skin cancer progression. Our results show the reversion of the malignancy of human squamous cell carcinomas that express increased levels of CYLD, while its functional inhibition enhances the aggressiveness of these tumors which progress toward spindle cell carcinomas. We have found that the mechanisms through which CYLD regulates skin cancer progression include the control of tumor differentiation, angiogenesis and cell survival. These findings of the role of CYLD in human skin cancer prognosis make our results relevant from a therapeutic point of view, and open new avenues for exploring novel cancer therapies.  相似文献   

6.
The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin‐conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin‐binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63‐linked polyubiquitin and facilitates the selective assembly of K48/K63‐branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.  相似文献   

7.
Any of seven lysine residues on ubiquitin can serve as the base for chain-extension, resulting in a sizeable spectrum of ubiquitin modifications differing in chain length or linkage type. By optimizing a procedure for rapid lysis, we charted the profile of conjugated cellular ubiquitin directly from whole cell extract. Roughly half of conjugated ubiquitin (even at high molecular weights) was nonextended, consisting of monoubiquitin modifications and chain terminators (endcaps). Of extended ubiquitin, the primary linkages were via Lys48 and Lys63. All other linkages were detected, contributing a relatively small portion that increased at lower molecular weights. In vivo expression of lysineless ubiquitin (K0 Ub) perturbed the ubiquitin landscape leading to elevated levels of conjugated ubiquitin, with a higher mono-to-poly ratio. Affinity purification of these trapped conjugates identified a comprehensive list of close to 900 proteins including novel targets. Many of the proteins enriched by K0 ubiquitination were membrane-associated, or involved in cellular trafficking. Prime among them are components of the ESCRT machinery and adaptors of the Rsp5 E3 ubiquitin ligase. Ubiquitin chains associated with these substrates were enriched for Lys63 linkages over Lys48, indicating that K0 Ub is unevenly distributed throughout the ubiquitinome. Biological assays validated the interference of K0 Ub with protein trafficking and MVB sorting, minimally affecting Lys48-dependent turnover of proteasome substrates. We conclude that despite the shared use of the ubiquitin molecule, the two branches of the ubiquitin machinery--the ubiquitin-proteasome system and the ubiquitin trafficking system--were unevenly perturbed by expression of K0 ubiquitin.  相似文献   

8.
Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis.  相似文献   

9.
Ubiquitination is an essential post-translational modification that regulates most cellular processes. The assembly of ubiquitin into polymeric chains by E3 ubiquitin ligases underlies the pleiotropic functions ubiquitin chains regulate. Ubiquitin chains assembled via the N-terminal methionine, termed Met1-linked ubiquitin chains or linear ubiquitin chains, have emerged as essential signalling scaffolds that regulate pro-inflammatory responses, anti-viral interferon responses, cell death and xenophagy of bacterial pathogens downstream of innate immune receptors. Met1-linked ubiquitin chains are exclusively assembled by the linear ubiquitin chain assembly complex, LUBAC, and are disassembled by the deubiquitinases OTULIN and CYLD. Genetic defects that perturb the regulation of Met1-linked ubiquitin chains causes severe immune-related disorders, illustrating their potent signalling capacity. Here, we review the current knowledge about the cellular machinery that conjugates, recognises, and disassembles Met1-linked ubiquitin chains, and discuss the function of this unique posttranslational modification in regulating inflammation, cell death and immunity to pathogens.Subject terms: Signal transduction, Antimicrobial responses, Cell death and immune response

  相似文献   

10.
Mutations in alpha-synuclein, Parkin, and UCH-L1 cause heritable forms of Parkinson disease. Unlike alpha-synuclein, for which no precise biochemical function has been elucidated, Parkin functions as a ubiquitin E3 ligase, and UCH-L1 is a deubiquitinating enzyme. The E3 ligase activity of Parkin in Parkinson disease is poorly understood and is further obscured by the fact that multiubiquitin chains can be formed through distinct types of linkages that regulate diverse cellular processes. For instance, ubiquitin lysine 48-linked multiubiquitin chains target substrates to the proteasome, whereas ubiquitin lysine 63-linked chains control ribosome function, protein sorting and trafficking, and endocytosis of membrane proteins. It is notable in this regard that ubiquitin lysine 63-linked chains promote the degradation of membrane proteins by the lysosome. Because both Parkin and alpha-synuclein can regulate the activity of the dopamine transporter, we investigated whether they influenced ubiquitin lysine 63-linked chain assembly. These studies revealed novel biochemical activities for both Parkin and alpha-synuclein. We determined that Parkin functions with UbcH13/Uev1a, a dimeric ubiquitin-conjugating enzyme, to assemble ubiquitin lysine 63-linked chains. Our results and the results of others indicate that Parkin can promote both lysine 48- and lysine 63-linked ubiquitin chains. alpha-Synuclein also stimulated the assembly of lysine 63-linked ubiquitin chains. Because UCH-L1, a ubiquitin hydrolase, was recently reported to form lysine 63-linked conjugates, it is evident that three proteins that are genetically linked to Parkinson disease can contribute to lysine 63 multiubiquitin chain formation.  相似文献   

11.
RIG-I-like receptors, including RIG-I, MDA5 and LGP2, recognize cytoplasmic viral RNA. The RIG-I protein consists of N-terminal CARDs, central RNA helicase and C-terminal domains. RIG-I activation is regulated by ubiquitination. Three ubiquitin ligases target the RIG-I protein. TRIM25 and Riplet ubiquitin ligases are positive regulators of RIG-I and deliver the K63-linked polyubiquitin moiety to RIG-I CARDs and the C-terminal domain. RNF125, another ubiquitin ligase, is a negative regulator of RIG-I and mediates K48-linked polyubiquitination of RIG-I, leading to the degradation of the RIG-I protein by proteasomes. The K63-linked polyubiquitin chains of RIG-I are removed by a deubiquitin enzyme, CYLD. Thus, CYLD is a negative regulator of RIG-I. Furthermore, TRIM25 itself is regulated by ubiquitination. HOIP and HOIL proteins are ubiquitin ligases and are also known as linear ubiquitin assembly complexes (LUBACs). The TRIM25 protein is ubiquitinated by LUBAC and then degraded by proteasomes. The splice variant of RIG-I encodes a protein that lacks the first CARD of RIG-I, and the variant RIG-I protein is not ubiquitinated by TRIM25. Therefore, ubiquitin is the key regulator of the cytoplasmic viral RNA sensor RIG-I.  相似文献   

12.
Protein ubiquitination regulates many cellular processes, including protein degradation, signal transduction, DNA repair and cell division. In the classical model, a uniform polyubiquitin chain that is linked through Lys 48 is required for recognition and degradation by the 26S proteasome. Here, we used a reconstituted system and quantitative mass spectrometry to demonstrate that cyclin B1 is modified by ubiquitin chains of complex topology, rather than by homogeneous Lys 48-linked chains. The anaphase-promoting complex was found to attach monoubiquitin to multiple lysine residues on cyclin B1, followed by poly-ubiquitin chain extensions linked through multiple lysine residues of ubiquitin (Lys 63, Lys 11 and Lys 48). These heterogeneous ubiquitin chains were sufficient for binding to ubiquitin receptors, as well as for degradation by the 26S proteasome, even when they were synthesized with mutant ubiquitin that lacked Lys 48. Together, our observations expand the context of what can be considered to be a sufficient degradation signal and provide unique insights into the mechanisms of substrate ubiquitination.  相似文献   

13.
Dishevelled (Dvl) proteins are activated by Wnt pathway stimulation and have crucial roles in the regulation of β-catenin destruction complex. CYLD is a tumor suppressor and a deubiquitination enzyme. CYLD negatively regulates the Wnt/β-catenin signaling pathway by deubiquitinating Dvl proteins. Loss of function and mutations of CYLD were linked to different types of solid tumors. Loss of function in CYLD is associated with Dvl hyper ubiquitination, resulting in the transmission of Wnt signaling to downstream effectors. β-catenin upregulation is observed during disease progression in chronic myeloid leukemia (CML). Deregulated Dvl signaling may be a reason for β-catenin activation in CML; and CYLD may contribute to Dvl deregulation. First, we evaluated mRNA expression in three CML cell lines and mRNA expression of the CYLD gene was found to be present in all (K562, MEG01, KU812). Unlike solid tumors sequencing revealed no mutations in the coding sequences of the CYLD gene. DVL genes were silenced by using a pool of siRNA oligonucleotides and gene expression differences in CYLD was determined by RT-PCR and western blot. CYLD protein expression decreased after Dvl silencing. An opposite approach of overexpressing Dvl proteins resulted in upregulated CYLD expression. While previous reports have described CYLD as a regulator of DVL proteins; our data suggests the presence of a more complicated reciprocal regulatory mechanism in CML cell lines.  相似文献   

14.
CD40, a tumor necrosis factor (TNF) receptor family member, is widely recognized for its prominent role in the antitumor immune response. The immunostimulatory effects of CD40 ligation on malignant cells can be switched to apoptosis upon disruption of survival signals transduced by the binding of the adaptor protein TRAF6 to CD40. Apoptosis induction requires a TRAF2-interacting CD40 motif but is initiated within a cytosolic death-inducing signaling complex after mobilization of receptor-bound TRAF2 to the cytoplasm. We demonstrate that receptor-interacting protein 1 (RIP1) is an integral component of this complex and is required for CD40 ligand-induced caspase-8 activation and tumor cell killing. Degradation of the RIP1 K63 ubiquitin ligases cIAP1/2 amplifies the CD40-mediated cytotoxic effect, whereas inhibition of CYLD, a RIP1 K63 deubiquitinating enzyme, reduces it. This two-step mechanism of apoptosis induction expands our appreciation of commonalities in apoptosis regulatory pathways across the TNF receptor superfamily and provides a telling example of how TNF family receptors usurp alternative programs to fulfill distinct cellular functions.  相似文献   

15.
Tumor suppressor gene CYLD is a deubiquitinating enzyme which negatively regulates various signaling pathways by removing the lysine 63-linked polyubiquitin chains from several specific substrates. Loss of CYLD in different types of tumors leads to either cell survival or proliferation. In this study we demonstrate that lack of CYLD expression in CYLD-/- MEFs increases proliferation rate of these cells compared to CYLD+/+ in a serum concentration dependent manner without affecting cell survival. The reduced proliferation rate in CYLD+/+ in the presence of serum was due to the binding of serum response factor (SRF) to the serum response element identified in the CYLD promoter for the up-regulation of CYLD levels. The serum regulated recruitment of SRF to the CYLD promoter was dependent on p38 mitogen-activated protein kinase (MAPK) activity. Elimination of SRF by siRNA or inhibition of p38 MAPK reduced the expression level of CYLD and increased cell proliferation. These results show that SRF acts as a positive regulator of CYLD expression, which in turn reduces the mitogenic activation of serum for aberrant proliferation of MEF cells.  相似文献   

16.
The familial cylindromatosis tumor suppressor CYLD is known to contain three cytoskeleton-associated protein glycine-rich (CAP-Gly) domains, which exist in a number of microtubule-binding proteins and are responsible for their association with microtubules. However, it remains elusive whether CYLD interacts with microtubules and, if so, whether the interaction is mediated by the CAP-Gly domains. In this study, our data demonstrate that CYLD associates with microtubules both in cells and in vitro, and the first CAP-Gly domain of CYLD is mainly responsible for the interaction. Knockdown of cellular CYLD expression dramatically delays microtubule regrowth after nocodazole washout, indicating an activity for CYLD in promoting microtubule assembly. Our data further demonstrate that CYLD enhances tubulin polymerization into microtubules by lowering the critical concentration for microtubule assembly. In addition, we have identified by wound healing assay a critical role for CYLD in mediating cell migration and found that its first CAP-Gly domain is required for this activity. Thus CYLD joins a growing list of CAP-Gly domain-containing proteins that regulate microtubule dynamics and function.  相似文献   

17.
Ubiquitin chain complexity in cells is likely regulated by a diverse set of deubiquitinating enzymes (DUBs) with distinct ubiquitin chain preferences. Here we show that the polyglutamine disease protein, ataxin-3, binds and cleaves ubiquitin chains in a manner suggesting that it functions as a mixed linkage, chain-editing enzyme. Ataxin-3 cleaves ubiquitin chains through its amino-terminal Josephin domain and binds ubiquitin chains through a carboxyl-terminal cluster of ubiquitin interaction motifs neighboring the pathogenic polyglutamine tract. Ataxin-3 binds both Lys(48)- or Lys(63)-linked chains yet preferentially cleaves Lys(63) linkages. Ataxin-3 shows even greater activity toward mixed linkage polyubiquitin, cleaving Lys(63) linkages in chains that contain both Lys(48) and Lys(63) linkages. The ubiquitin interaction motifs regulate the specificity of this activity by restricting what can be cleaved by the protease domain, demonstrating that linkage specificity can be determined by elements outside the catalytic domain of a DUB. These findings establish ataxin-3 as a novel DUB that edits topologically complex chains.  相似文献   

18.
Arachidonic acid, a dietary cis-polyunsaturated fatty acid, stimulates adhesion and migration of human cancer cells on the extracellular matrix by activation of intracellular signaling pathways. Polyubiquitin chains bearing linkages through different lysine residues convey distinct structural and functional information that is important for signal transduction. We investigated whether ubiquitination was required for arachidonic acid-induced cellular adhesion and migration of MDA-MB-435 cells on collagen type IV. An E1 (ubiquitin-activating enzyme) inhibitor, PYR-431, completely abrogated arachidonic acid-stimulated adhesion. Additionally, expression of a lysine null mutant ubiquitin prevented activation of cellular adhesion. Cells expressing ubiquitin in which lysine 63 (K63) was mutated to arginine (K63R) were unable to adhere to collagen upon exposure to arachidonic acid. When K63 was the only lysine present, the cells retained the ability to adhere, indicating that K63-linked ubiquitin is both necessary and sufficient. Moreover, K63-linked ubiquitin was required for the induction of cell migration by arachidonic acid. The ubiquitin mutants and PYR-431 did not prevent arachidonic acid-induced phosphorylation of TGF-β activated kinase-1 (TAK1) and p38 MAPK, suggesting K63-linked ubiquitination occurs downstream of MAPK. These novel findings are the first to demonstrate a role for K63-linked ubiquitination in promoting cell adhesion and migration.  相似文献   

19.
UBQLN proteins regulate proteostasis by facilitating clearance of misfolded proteins through the proteasome and autophagy degradation pathways. Consistent with its proteasomal function, UBQLN proteins contain both UBL and UBA domains, which bind subunits of the proteasome, including the S5a subunit, and ubiquitin chains, respectively. Conclusions regarding the binding properties of UBQLN proteins have been derived principally through studies of its individual domains, not the full-length (FL) proteins. Here we describe the in vitro binding properties of FL-UBQLN1 with the S5a subunit of the proteasome and two different lysine-linked (K48 or K63) ubiquitin chains. We show that in contrast to its isolated UBA domain, which binds almost equally well with both K48 and K63 ubiquitin chains, FL UBQLN1 binds preferentially with K63 chains. Furthermore, we show that deletion of the UBL domain from UBQLN1 abrogates ubiquitin binding. Taken together these results suggest that sequences outside of the UBA domain in UBQLN1 function to regulate the specificity and binding with different ubiquitin moieties. We also show that the UBL domain of UBQLN1 is required for S5a binding and that its binding to UBQLN1, in turn, enhances K48 ubiquitin chain binding to the complex. We discuss the implications of our findings with the known function of UBQLN proteins in protein degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号