首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The cause of male sterility in 3 soybean lines, TGM 103-1, N-69-2774 and TGM 242-4 was studied. In TGM 103-1, which was both male and female sterile, two different abnormalities were associated with sterility. Precocious movement of a few chromosomes at the metaphase I stage resulted into the production of non-functional pollen while cells which underwent apparent normal meiotic division had disintergration of the tapetal cell wall immediately after the free microspore stage leading to the starvation and subsequent death of the developing microspores. In lines N-69-2774 and TGM 242-4, both of which were partially sterile, male sterility resulted from a failure of cytokinesis after the telophase II stage. Meiosis proceeded normally but the 4 microspores after telophase II failed to separate into pollen grains and degenerated thereafter.  相似文献   

2.
Summary Double-stranded RNA (dsRNA) was isolated from rice Oryza sativa ssp. japonica, but not from other subspecies. The dsRNA has been found in all of the examined cytoplasmic male-sterile (CMS) lines of BT (Chinsurah Boro II)-type rice, but was not detected in their companionate maintainer lines. It is uniquely and positivley correlated with the CMS trait in BT-type rice. Recently, the dsRNA was also found in a nuclear malesterile (NMS) rice, Nongken 58s, but was not found in its normal Nongken 58. The molecular weight of this dsRNA was estimated to be about 18 kb. Electron microscopic analysis reveals that it is linear snapped. The double strandedness of the RNA molecules was characterized by CF-11 cellulose column chromatography and nuclease treatments. It bound to CF-11 cellulose in the presence of 15% ethanol. It was sensitive to RNase A at low salt concentrations, but insensitive to DNase I, SI nuclease, and RNase A at high salt concentrations. The dsRNA was detected in both mitochondrial and cytoplasmic fractions. Dot-blot hybridization reveals that there is no sequence homology between this dsRNA and mtDNA, but there is homology between this dsRNA and nuclear genomic DNA. We have not been able to transmit this dsRNA to fertile rice.  相似文献   

3.
Spermiogenesis is the final phase during sperm cell development in which round spermatids undergo dramatic morphological changes to generate spermatozoa. Here we report that the serine/threonine kinase Stk33 is essential for the differentiation of round spermatids into functional sperm cells and male fertility. Constitutive Stk33 deletion in mice results in severely malformed and immotile spermatozoa that are particularly characterized by disordered structural tail elements. Stk33 expression first appears in primary spermatocytes, and targeted deletion of Stk33 in these cells recapitulates the defects observed in constitutive knockout mice, confirming a germ cell-intrinsic function. Stk33 protein resides in the cytoplasm and partially co-localizes with the caudal end of the manchette, a transient structure that guides tail elongation, in elongating spermatids, and loss of Stk33 leads to the appearance of a tight, straight and elongated manchette. Together, these results identify Stk33 as an essential regulator of spermatid differentiation and male fertility.  相似文献   

4.
Inheritance of spontaneous male sterility in peas   总被引:1,自引:0,他引:1  
A plant with a mutant phenotype was observed in a Longittee cultivar. The plant was late in maturity, had white-translucent anthers, and was male sterile. The inheritance of this mutant was studied in a cross involving the mutant and the mother parent and their F1, F2, F3 and BC1F1 generations. The results suggested that the sterile character was genetic and due to a recessive gene.  相似文献   

5.
Summary Male sterility in Pennisetum americanum (L.) Leeke, inbred line IP 482, was found to be inherited as a monofactorial recessive phenotype. Homozygosity for the gene designated ms 2, produced in addition to pollen abortion, plasmodial tapetum, plasmodial pollen mother cells, delayed and asynchronous meiotic development, desynapsis and blockage of meiosis. Plasmodial PMCs resulted from the fusion of PMCs at pachytene.  相似文献   

6.
 A male-sterile plant was observed in the UPAS-120 cultivar of pigeonpea (Cajanus cajan). The plant was about 5–7 days late-flowering and had white translucent anthers with complete pollen sterility. The inheritance of this spontaneous male sterility was studied in a cross involving the mutant and fertile UPAS-120, including their F1, F2, BC1F1 and BC2F1 generations. The results suggested that the male sterility was genetic and due to a recessive gene. Received: 12 November 1996/Accepted: 17 January 1997  相似文献   

7.
The plastids in the cells of the tapetum in anther of Oenothera are involved in the development of male sterility (mst). We combined nuclear homozygosity for each of the two mst genes with the four different plastomes of Oenothera and demonstrated that in both cases the sterile anther phenotype is independent of the plastome. The experiments provide additional information on competition between megaspores and embryo sacs in the ovule.  相似文献   

8.
《遗传学报》2020,47(5):263-272
Male sterile genes and mutants are valuable resources in hybrid seed production for monoclinous crops.High genetic redundancy due to allohexaploidy makes it difficult to obtain the nuclear recessive male sterile mutants through spontaneous mutation or chemical or physical mutagenesis methods in wheat.The emerging effective genome editing tool,CRISPR/Cas9 system,makes it possible to achieve simultaneous mutagenesis in multiple homoeoalleles.To improve the genome modification efficiency of the CRISPR/Cas9 system in wheat,we compared four different RNA polymerase(Pol) Ⅲ promoters(TaU3 p,TaU6 p,OsU3 p,and OsU6 p) and three types of sgRNA scaffold in the protoplast system.We show that the TaU3 promoter-driven optimized sgRNA scaffold was most effective.The optimized CRISPR/Cas9 system was used to edit three TaNP1 homoeoalleles,whose orthologs,OsNP1 in rice and ZmIPE1 in maize,encode a putative glucose-methanol-choline oxidoreductase and are required for male sterility.Triple homozygous mutations in TaNP1 genes result in complete male sterility.We further demonstrated that anyone wild-type copy of the three TaNP1 genes is sufficient for maintenance of male fertility.Taken together,this study provides an optimized CRISPR/Cas9 vector for wheat genome editing and a complete male sterile mutant for development of a commercially viable hybrid wheat seed production system.  相似文献   

9.
Summary Male sterility in Oenothera is influenced by two nuclear genes,fr andster. Their function is independent of the plastomes. Development of anthers, fertile and sterile male, was studied by electron microscopy and histochemical methods. Both genes act on lipid metabolism but at different developmental stages. Infr/fr homozygotes the disturbance is expressed as a lack of sporopollenin in the exine, while amorphous lipid material is deposited in the loculus. Inster/ster homozygotes sporopollenin is formed normally in the endexine but the paracristalline structure of the ektexine is missing. In both mutants the disturbance leads to complete destruction of the pollen grain. The deviation from fertile pollen development is correlated with abnormalities of the tapetum and outer cell layers of the anther wall.  相似文献   

10.
Males homozygous for the repro32 ENU-induced mutation produced by the Reproductive Genomics program at The Jackson Laboratory are infertile, have low epididymal sperm concentrations, and produce sperm with abnormally shaped heads and poor motility. The purpose of the present study was to identify the mutated gene in repro32 mice and to define the structural and functional changes causing infertility and the aberrant sperm phenotype. In repro32/repro32 mice, we discovered a failure to shed excess cytoplasm and disorganization of the middle piece of the flagellum at spermiation, resulting in the outer dense fibers being wrapped around the sperm head within a bag of cytoplasm. Using a candidate-gene approach, a mutation was identified in the spermatid-specific “capping protein (actin filament) muscle Z-line, alpha 3” gene (Capza3). CAPZA3 protein localization was altered in spermatids concurrent with altered localization of a unique CAPZB variant isoform and disruption of the filamentous actin (F-actin) network. These observations strongly suggest the missense mutation in Capza3 is responsible for the mutant phenotype of repro32/repro32 sperm and regulation of F-actin dynamics by a spermatogenic cell-specific CAPZ heterodimer is essential for removal of the cytoplasm and maintenance of midpiece integrity during spermiation in the mouse.  相似文献   

11.
Distyly, a reproductive system characterized by the presence of long-styled (thrum). and short-styled (pin) individuals within a population, has been repeatedly used as a model for the study of the evolution of the reproductive systems in plants. Erythroxylum havanense is a distylous species in which most thrum plants fail to develop a fertile androecium, thus behaving as male-sterile or partially male-sterile plants. Short-styled (thrum) individuals have an increased performance as female parents, thereby compensating for their loss of male fitness. Previous studies of populations within close proximity to each other suggest that E. havanense may be involved in a process of gender specialization in which, unlike other heterostylous species, thrum plants are specializing as females and pins (long-styled) as males. In this paper we describe more general patterns of male sterility, one of the first steps in the evolution of gender specialization, among populations of the distylous shrub Erythroxylum havanense. Pollen germination differed among populations (range 0.52 ± 0.03 to 0.06 ± 0.04), and between morphs. Pollen from pin plants was almost two times (1.89) as fertile as that from thrums (0.36 ± 0.03 and 0.19 ± 0.03, pin and thrums respectively). Thrums were significantly more male sterile in four out of five populations. The population where differences between the floral morphs were not apparent showed the lowest levels of pollen fertility. Accordingly, our results indicate that populations of E. havanense show marked differences in pollen fertility and higher male sterility associated with the thrum morph. We hypothesize that differences between morphs could be explained if restorers of male sterility are linked to the distyly haplotype, while differences in genes associated with male sterility could explain the variation among populations. Overall, the prevalence of thrum-biased male sterility across populations suggests that E. havanense is subject to a process of gender specialization.  相似文献   

12.
Summary Reciprocal differences for male sterility, dwarfism and morphological traits have been studied in intra- and interspecific crosses of five Epilobium species. Male sterility occurred in two interspecific hybrids with E. montanum as the male parent while dwarfism has been found to varying degrees in three interspecific crosses with E. watsonni. In contrast to transient differences in plant height and leaf morphology in reciprocal hybrids of the cross between E. hirsutum and E. parviflorum, male sterility and dwarfism persistently occur as reciprocally different traits which may be influenced by determinants of the cytoplasm. The molecular characterization of the plastid DNA of the parental lines and the F1 hybrids indicate that the plastome of male sterile and dwarf plants is identical to that of the female parents. Furthermore, in spite of these developmental disturbances, the expression of plastid genes coding for polypeptides of thylakoid-membrane complexes is unchanged. Thus, it seems unlikely that the genetic compartement of the plastids is responsible for the expression of the male sterile or the dwarfed phenotype.  相似文献   

13.
14.
During mammalian spermatogenesis, the diploid spermatogonia mature into haploid spermatozoa through a highly controlled process of mitosis, meiosis and post-meiotic morphological remodeling (spermiogenesis). Despite important progress made in this area, the molecular mechanisms underpinning this transformation are poorly understood. Our analysis of the expression and function of the putative serine–threonine kinase Fused (Fu) provides critical insight into key steps in spermatogenesis. In this report, we demonstrate that conditional inactivation of Fu in male germ cells results in infertility due to diminished sperm count, abnormal head shaping, decapitation and motility defects of the sperm. Interestingly, mutant flagellar axonemes are intact but exhibit altered periaxonemal structures that affect motility. These data suggest that Fu plays a central role in shaping the sperm head and controlling the organization of the periaxonemal structures in the flagellum. We show that Fu localizes to multiple tubulin-containing or microtubule-organizing structures, including the manchette and the acrosome–acroplaxome complex that are involved in spermatid head shaping. In addition, Fu interacts with the outer dense fiber protein Odf1, a major component of the periaxonemal structures in the sperm flagellum, and Kif27, which is detected in the manchette. We propose that disrupted Fu function in these structures underlies the head and flagellar defects in Fu-deficient sperm. Since a majority of human male infertility syndromes stem from reduced sperm motility and structural defects, uncovering Fu?s role in spermiogenesis provides new insight into the causes of sterility and the biology of reproduction.  相似文献   

15.
Comparative genetic mapping provides insights into the evolution of the reproductive barriers that separate closely related species. This approach has been used to document the accumulation of reproductive incompatibilities over time, but has only been applied to a few taxa. House mice offer a powerful system to reconstruct the evolution of reproductive isolation between multiple subspecies pairs. However, studies of the primary reproductive barrier in house mice-hybrid male sterility-have been restricted to a single subspecies pair: Mus musculus musculus and Mus musculus domesticus. To provide a more complete characterization of reproductive isolation in house mice, we conducted an F(2) intercross between wild-derived inbred strains from Mus musculus castaneus and M. m. domesticus. We identified autosomal and X-linked QTL associated with a range of hybrid male sterility phenotypes, including testis weight, sperm density, and sperm morphology. The pseudoautosomal region (PAR) was strongly associated with hybrid sterility phenotypes when heterozygous. We compared QTL found in this cross with QTL identified in a previous F(2) intercross between M. m. musculus and M. m. domesticus and found three shared autosomal QTL. Most QTL were not shared, demonstrating that the genetic basis of hybrid male sterility largely differs between these closely related subspecies pairs. These results lay the groundwork for identifying genes responsible for the early stages of speciation in house mice.  相似文献   

16.
17.
Four mutants of Arabidopsis thaliana that are deficient in adenine phosphoribosyl transferase (APRT) activity have been isolated by selecting for germination of seeds and growth of the plantlets on a medium containing 2,6-diaminopurine (DAP), a toxic analog of adenine. In all mutants, DAP resistance is due to a recessive nuclear mutation at a locus designated apt. The mutants are male sterile due to pollen abortion after meiosis. Furthermore, it has been shown that metabolism of cytokinins is impaired in the mutant BM3, which has the lowest level of APRT activity among the mutants tested. However, three different cDNAs encoding APRT have been isolated in A. thaliana and this raised the question of the nature of the mutation which results in low APRT activity. The mutation was genetically mapped to chromosome I and lies within 6 cM of the phenotypic marker dis2, indicating that the mutation affects the APT1 gene, a result confirmed by sequencing of mutant alleles. The mutation in the allele apt1-3 is located at the 5′ splicing site of the third intron, and eliminates a BstNI restriction site, as verified by Southern blotting and PCR fragment length analysis. Received: 20 February 1997 / Accepted: 28 August 1997  相似文献   

18.
Summary Outcrossing rates were estimated in three populations of the gynodioecious species Plantago coronopus by means of electrophoresis of adult plants and their natural progenies. A multilocus estimation procedure was used. Heterogeneity among the pollen-pool allele frequencies did not exist either in space of in time. Differences between populations in mean outcrossing rates were large (range: 0.34–0.93), probably caused by differences in densities of flowering plants. In addition, there was considerable variability between individuals, which was at least partly caused by the presence of male sterility. Population density may, via its influence on outcrossing rates, be a factor influencing the maintenance of male sterile plants in the population. The level of outcrossing in hermaphrodites was not low enough to explain the maintenance of male steriles. Outcrossing rates in two populations, established via progeny analysis, were much lower than calculated with the fixation index, possibly indicating heterozygote advantage in these natural populations.Grassland Species Research Group Publication no. 134  相似文献   

19.
Mitochondrial genome diversity in chives (Allium schoenoprasum L.) was investigated with respect to different forms of male sterility. Cytoplasmic male-sterile (CMS) and restored genotypes of the known CMS system, compared to plants of the wi-, the st1- and the st2-sterility types and additional fertile plants of different origin were examined by means of RFLP analyses using mitochondrial gene probes. Besides the (S)-cytoplasm of the CMS system four additional cytoplasms were distinguished that differed in the organisation of their mitochondrial genomes. There is consequently a high degree of variability of the mitochondrial genome in chives, especially when compared with the closely related onion. A possible function of the atp9 gene in generating the different cytoplasm types of chives is discussed in relation to the origin of known CMS sequences in other plant species. The existence of different cytoplasm types offers the opportunity for further characterisation of the wi-, st1- and st2-sterility systems with respect to cytoplasmic factors which might be causally related to them. Whether these new sterilities are CMS or GMS (genic male sterilities) is of interest to plant breeders in order that restrictions on the genetic basis used in hybrid seed production be avoided. Received: 6 July 1999 / Accepted: 6 September 1999  相似文献   

20.
Summary Cultivars of T. aestivum crossed onto two lines with male sterility induced by the cytoplasm of T. timopheevi gave a high level of restoration in the F1 generation. The ratio of fertile to sterile plants segregating in the F2 generation was consistent with that expected for a single dominant restorer gene. The possible association between this gene and mildew resistance or some other desirable character derived from CI 12633, a common ancestor of the cultivars used, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号