首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Isothermal calorimetric titration of 18-crown-6 ether with BaCl2 in pure aqueous solution over the temperature range 7-40 degrees C gives precise binding constants and enthalpy changes. Nonlinear least-squares fitting of the binding constants to the integrated van't Hoff equation, including a temperature-independent change in heat capacity, leads to van't Hoff enthalpies that differ significantly from the observed calorimetric enthalpies. This perplexing discrepancy appears at present to be very widely occurring.  相似文献   

2.

Background

The nucleotidyl cyclase toxin ExoY is an important virulence determinant of Pseudomonas aeruginosa that causes severe acute and chronic infections in immune-compromised individuals. Additionally, this unique T3SS effector shows a striking preference for cUMP, a newly identified non-canonical secondary messenger. Thereby, ExoY is also considered as a potential tool to study unexplored cUMP signaling pathways.

Methods

The crystal structure of ExoY was determined at 2.2?Å resolutions by in-situ proteolysis assisted crystallization and Rosetta-molecular replacement method. Additionally, isothermal calorimetric (ITC) and molecular dynamic (MD) simulation studies were also carried out to gain molecular insights into its substrate specificity and catalysis.

Results and conclusion

ExoY is a partially unfolded protein with higher propensity to form soluble higher-order oligomers. However, with meticulous attempts of removing of disordered regions by proteases, the recalcitrant ExoY could be successfully crystallized. The crystal structure of ExoY revealed similar overall structural fold present in other anthrax toxA family of nucleotidyl cyclases, with two-to-three distinctly conserved regions conferring specificity to eukaryotic binding partner. The in-vitro catalytic preference of ExoY is in the following order: cGMP > cUMP > cAMP > cCMP. The substrate specificity of ExoY mainly depends on its ability to bind NTP in proper geometrical orientations. ExoY also seems to prefer one-metal-ion dependent catalysis than two-metal-ion dependent catalysis.

General significance

Our results provide much needed structural insight on ExoY, an important virulence determinant of Pseudomonas aeruginosa and an exciting tool to study non-canonical cNMP signaling pathways.

Accession numbers

The structure factors and coordinate files have been deposited in the Protein Data Bank with accession number 5XNW.  相似文献   

3.

Background

In humans, bitterness perception is mediated by ~25 bitter taste receptors present in the oral cavity. Among these receptors three, TAS2R10, TAS2R14 and TAS2R46, exhibit extraordinary wide agonist profiles and hence contribute disproportionally high to the perception of bitterness. Perhaps the most broadly tuned receptor is the TAS2R14, which may represent, because of its prominent expression in extraoral tissues, a receptor of particular importance for the physiological actions of bitter compounds beyond taste.

Methods

To investigate how the architecture and composition of the TAS2R14 binding pocket enables specific interactions with a complex array of chemically diverse bitter agonists, we carried out homology modeling and ligand docking experiments, subjected the receptor to point-mutagenesis of binding site residues and performed functional calcium mobilization assays.

Results

In total, 40 point-mutated receptor constructs were generated to investigate the contribution of 19 positions presumably located in the receptor's binding pocket to activation by 7 different TAS2R14 agonists. All investigated positions exhibited moderate to pronounced agonist selectivity.

Conclusions

Since numerous modifications of the TAS2R14 binding pocket resulted in improved responses to individual agonists, we conclude that this bitter taste receptor might represent a suitable template for the engineering of the agonist profile of a chemoreceptive receptor.

General significance

The detailed structure-function analysis of the highly promiscuous and widely expressed TAS2R14 suggests that this receptor must be considered as potentially frequent target for known and novel drugs including undesired off-effects.  相似文献   

4.

Background

A number of compounds, including ascorbic acid, catecholamines, flavonoids, p-diphenols and hydrazine derivatives have been reported to interfere with peroxidase-based medical diagnostic tests (Trinder reaction) but the mechanisms of these effects have not been fully elucidated.

Methods

Reactions of bovine myeloperoxidase with o-dianisidine, bovine lactoperoxidase with ABTS and horseradish peroxidase with 4-aminoantipyrine/phenol in the presence of carbidopa, an anti-Parkinsonian drug, and other catechols, including l-dopa, were monitored spectrophotometrically and by measuring hydrogen peroxide consumption.

Results

Chromophore formation in all three enzyme/substrate systems was blocked in the presence of carbidopa and other catechols. However, the rates of hydrogen peroxide consumption were not much affected. Irreversible enzyme inhibition was also insignificant.

Conclusions

Tested compounds reduced the oxidation products or intermediates of model substrates thus preventing chromophore formation. This interference may affect interpretation of results of diagnostic tests in samples from patients with Parkinson's disease treated with carbidopa and l-dopa.

General significance

This mechanism allows prediction of interference in peroxidase-based diagnostic tests for other compounds, including drugs and natural products.  相似文献   

5.

Background

Tumor microenvironment consists of the extracellular matrix (ECM), stromal cells, such as fibroblasts (FBs) and cancer associated fibroblasts (CAFs), and a myriad of soluble factors. In many tumor types, including pancreatic tumors, the interplay between stromal cells and the other tumor microenvironment components leads to desmoplasia, a cancer-specific type of fibrosis that hinders treatment. Transforming growth factor beta (TGF-β) and CAFs are thought to play a crucial role in this tumor desmoplastic reaction, although the involved mechanisms are unknown.

Methods

Optical/fluorescence microscopy, atomic force microscopy, image processing techniques, invasion assay in 3D collagen I gels and real-time PCR were employed to investigate the effect of TGF-β on normal pancreatic FBs and CAFs with regard to crucial cellular morphodynamic characteristics and relevant gene expression involved in tumor progression and metastasis.

Results

CAFs present specific myofibroblast-like characteristics, such as α-smooth muscle actin expression and cell elongation, they also form more lamellipodia and are softer than FBs. TGF-β treatment increases cell stiffness (Young's modulus) of both FBs and CAFs and increases CAF's (but not FB's) elongation, cell spreading, lamellipodia formation and spheroid invasion. Gene expression analysis shows that these morphodynamic characteristics are mediated by Rac, RhoA and ROCK expression in CAFs treated with TGF-β.

Conclusions

TGF-β modulates CAFs', but not FBs', cell shape, stiffness and invasion.

General Significance

Our findings elucidate on the effects of TGF-β on CAFs' behavior and stiffness providing new insights into the mechanisms involved.  相似文献   

6.

Background

The goal of this work is to develop a non-invasive method in order to help detecting Alzheimer's disease in its early stages, by implementing voice analysis techniques based on machine learning algorithms.

Methods

We extract temporal and acoustical voice features (e.g. Jitter and Harmonics-to-Noise Ratio) from read speech of patients in Early Stage of Alzheimer's Disease (ES-AD), with Mild Cognitive Impairment (MCI), and from a Healthy Control (HC) group. Three classification methods are used to evaluate the efficiency of these features, namely kNN, SVM and decision Tree. To assess the effectiveness of this set of features, we compare them with two sets of feature parameters that are widely used in speech and speaker recognition applications. A two-stage feature selection process is conducted to optimize classification performance. For these experiments, the data samples of HC, ES-AD and MCI groups were collected at AP-HP Broca Hospital, in Paris.

Results

First, a wrapper feature selection method for each feature set is evaluated and the relevant features for each classifier are selected. By combining, for each classifier, the features selected from each initial set, we improve the classification accuracy by a relative gain of more than 30% for all classifiers. Then the same feature selection procedure is performed anew on the combination of selected feature sets, resulting in an additional significant improvement of classification accuracy.

Conclusion

The proposed method improved the classification accuracy for ES-AD, MCI and HC groups and promises the effectiveness of speech analysis and machine learning techniques to help detect pathological diseases.  相似文献   

7.

Background

Salsolinol (SALSO), a product from the reaction of dopamine (DA) with acetaldehyde, is found increased in dopaminergic neurons of Parkinson's disease (PD) patients. The administration of SALSO in rats causes myenteric neurodegeneration followed by the formation of deposits of the protein α-synuclein (aS), whose aggregation is intimately associated to PD.

Methods

NMR, isothermal titration calorimetry and MS were used to evaluate the interaction of SALSO with aS. The toxicity of SALSO and in vitro-produced aS-SALSO species was evaluated on mesencephalic primary neurons from mice.

Results

SALSO, under oxidative conditions, stabilizes the monomeric state besides a minor population of oligomers of aS, resulting in a strong inhibition of the fibrillation process. SALSO does not promote any chemical modification of the protein. Instead, the interaction of SALSO with aS seems to occur via hydrophobic effect, likely mediated by the NAC (non-amyloid component) domain of the protein. aS-SALSO species were found to be innocuous on primary neurons, while SALSO alone induces apoptosis via caspase-3 activation. Importantly, exogenous aS monomer was capable of protecting neurons against SALSO toxicity irrespective whether the protein was co-administered with SALSO or added until 2?h after SALSO, as evidenced by DAPI and cleaved-caspase 3 assays. Similar protective action of aS was found by pre-incubating neurons with aS before the administration of SALSO.

Conclusions

Interaction of SALSO with aS leads to the formation of fibril-incompetent and innocuous adducts. SALSO toxicity is attenuated by aS monomer.

Significance

aS could exhibit a protective role against the neurotoxic effects of SALSO in dopaminergic neuron.  相似文献   

8.

Background

NUPR1 is a multifunctional intrinsically disordered protein (IDP) involved, among other functions, in chromatin remodelling, and development of pancreatic ductal adenocarcinoma (PDAC). It interacts with several biomolecules through hydrophobic patches around residues Ala33 and Thr68. The drug trifluoperazine (TFP), which hampers PDAC development in xenografted mice, also binds to those regions. Because of the large size of the hot-spot interface of NUPR1, small molecules could not be adequate to modulate its functions.

Methods

We explored how amphipathic helical-designed peptides were capable of interacting with wild-type NUPR1 and the Thr68Gln mutant, inhibiting the interaction with NUPR1 protein partners. We used in vitro biophysical techniques (fluorescence, circular dichroism (CD), nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC)), in silico studies (docking and molecular dynamics (MD)), and in cellulo protein ligation assays (PLAs) to study the interaction.

Results

Peptide dissociation constants towards wild-type NUPR1 were ~ 3?μM, whereas no interaction was observed with the Thr68Gln mutant. Peptides interacted with wild-type NUPR1 residues around Ala33 and residues at the C terminus, as shown by NMR. The computational results clarified the main determinants of the interactions, providing a mechanism for the ligand-capture that explains why peptide binding was not observed for Thr68Gln mutant. Finally, the in cellulo assays indicated that two out of four peptides inhibited the interaction of NUPR1 with the C-terminal region of the Polycomb RING protein 1 (C-RING1B).

Conclusions

Designed peptides can be used as lead compounds to inhibit NUPR1 interactions.

General significance

Peptides may be exploited as drugs to target IDPs.  相似文献   

9.
10.

Background

Specific compounds found in vegetal species have been demonstrated to be efficient inhibitors of snake toxins, such as phospholipase A2-like (PLA2-like) proteins. These particular proteins, present in several species of vipers (Viperidae), induce a severe local myotoxic effect in prey and human victims, and this effect is often not efficiently neutralized by the regular serum therapy. PLA2-like proteins have been functionally and structurally studied since the early 1990s; however, a comprehensive molecular mechanism was proposed only recently.

Methods

Myographic and histological techniques were used to evaluate the inhibitory effect of chicoric acid (CA) against BthTX-I myotoxin. Isothermal titration calorimetry assays were used to measure the affinity between the inhibitor and the toxin. X-ray crystallography was used to reveal details of this interaction.

Results

CA prevented the blockade of indirectly evoked muscle contraction and inhibited muscle damage induced by BthTX-I. The inhibitor binds to the toxin with the highest affinity measured for a natural compound in calorimetric assays. The crystal structure and molecular dynamics simulations demonstrated that CA binds at the entrance of the hydrophobic channel of the toxin and binds to one of the clusters that participates in membrane disruption.

Conclusions

CA prevents the myotoxic activity of the toxin, preventing its activation by simultaneous binding with two critical regions.

General significance

CA is a potential myotoxic inhibitor to other PLA2-like proteins and a possible candidate to complement serum therapy.  相似文献   

11.

Background

HSP27 plays a role in various diseases, including neurodegenerative diseases, ischemia, and atherosclerosis. It is particularly important in the regulation of the development, progression and metastasis of cancer as well as cell apoptosis and drug resistance. However, the absence of an ATP binding domain, that is, instead, present in other HSPs such as HSP90 and HSP70, hampers the development of small molecules as inhibitors of HSP27.

Methods

Knockout cell lines generated by Crispr/Cas9 gene editing tool, specific kinase inhibitors and siRNA transfections were exploited to demonstrate that the expression of HSP27 is dependent on the integrity/activity of protein kinase CK2 holoenzyme. The interaction between these proteins has been confirmed by co-immunoprecipitation, confocal immunofluorescence microscopy, and by density gradient separation of protein complexes. Finally, using a proliferation assay this study demonstrates the potential efficacy of a combinatory therapy of heath shock and CK2 inhibitors in cancer treatment.

Results

Our data demonstrate that CK2 is able to regulate HSP27 turnover by affecting the expression of its ubiquitin ligase SMURF2 (Smad ubiquitination regulatory factor 2). Moreover, for the first time we show an increased sensitivity of CK2-inhibited tumour cells to hyperthermia treatment.

Conclusion

Being HSP27 involved in several pathological conditions, including protein conformational diseases (i.e Cystic Fibrosis) and cancer, the need of drugs to modulate its activity is growing and CK2-targeting could represent a new strategy to reduce cellular HSP27 level.

General significance

This study identifies CK2 as a molecular target to control HSP27 cellular expression.  相似文献   

12.

Background

Recently diphenyl-pyrazole (DPP) compounds and especially anle138b were found to reduce the aggregation of α-synuclein or Tau protein in vitro as well as in a mouse model of neurodegenerative diseases [1,2]. Direct interaction of the DPPs with the fibrillar structure was identified by fluorescence spectroscopy. Thereby a strong dependence of the fluorescence on the surroundings could be identified [3].

Methods

Stationary and time-resolved emission experiments were performed on DPP compounds substituted by different halogens.

Results

The compounds reveal a pronounced dependence of the fluorescence on the surrounding solvent. In non-polar solvents they show strong emission in the blue part of the spectrum while in polar and proton donating solvents, such as water or acetic acid a dual fluorescence can be observed where a red-shifted emission points to a charge transfer in the excited state with large dipole moment. Non-radiative processes including photochemical reactions are observed for DPP substituted with heavy halogens. Upon binding of anle138b and its derivatives to protein fibrils in aqueous buffer, strong enhancement of the fluorescence at short wavelengths is found.

Conclusion

The investigations of the DPPs in different surroundings lead to a detailed model of the fluorescence characteristics. We propose a model for the binding in fibrils of different proteins, where the DPP is located in a hydrophobic groove independent of the specific sequence of the amino acids.

General significance

These investigations characterize the binding site of the DPP anle138b in protein aggregates and contribute to the understanding of the therapeutic mode of action of this compound.  相似文献   

13.

Background

Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk.

Methods

This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk.

Results

Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland.

Conclusion

We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties.

General significance

Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms.  相似文献   

14.
15.

Background

Accumulation of simple gangliosides GM2 and GM3, and gangliosides with longer long-chain bases (d20:1) have been linked to toxicity and the pathogenesis of Alzheimer's disease (AD). Conversely, complex gangliosides, such as GM1, have been shown to be neuroprotective. Recent evidence using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) has demonstrated that a-series gangliosides are differentially altered during normal aging, yet it remains unclear how simple species are shifting relative to complex gangliosides in the prodromal stages of AD.

Methods

Ganglioside profiles in wild-type (Wt) and transgenic APP21 Fischer rats were detected and quantified using MALDI-IMS at P0 (birth), 3, 12, and 20?months of age and each species quantified to allow for individual species comparisons.

Results

Tg APP21 rats were found to have a decreased level of complex gangliosides in a number of brain regions as compared to Wt rats and showed higher levels of simple gangliosides. A unique pattern of expression was observed in the white matter as compared to gray matter regions, with an age-dependent decrease in GD1 d18:1 species observed and significantly elevated levels of GM3 in Tg APP21 rats.

Conclusions

These results are indicative of a pathological shift in ganglioside homeostasis during aging that is exacerbated in Tg APP21 rats.

General significance

Ganglioside dysregulation may occur in the prodromal stages of neurodegenerative diseases like AD.  相似文献   

16.

Background

Binding of chemokines to glycosaminoglycans (GAGs) is a crucial step in leukocyte recruitment to inflamed tissues.

Methods

A disaccharide compositional analysis of the HS dp6 fraction in combination with MS analysis of the CCL2-depleted dp6 fraction was the basis for target GAG ligand structure suggestions. Four experimentally-derived heparan sulfate hexasaccharides, two potentially chemokine-specific and two unspecific, have been docked to CCL2. Subsequent 300?ns molecular dynamics simulations were used to improve the docked complexes.

Results

Hexasaccharides with four sulfations and no acetylations are suggested for selective and high affinity chemokine binding. Using the Antithromin-III/heparin complex as positive control for docking, we were able to recover the correct complex structure only if the previously liganded ATIII structure was used as input. Since the liganded structure is not known for a CCL2-GAG complex, we investigated if molecular dynamics simulations could improve initial docking results. We found that all four GAG oligosaccharides ended up in close contact with the known binding residues after about 100?ns simulation time.

Conclusions

A discrimination of specific vs. unspecific CCL2 GAG ligands is not possible by this approach. Long-time molecular dynamics simulations are, however, well suited to capture the delicate enthalpy/entropy balance of GAG binding and improve results obtained from docking.

General significance

With the comparison of two methods, MS-based ligand identification and molecular modelling, we have shown the current limitations of our molecular understanding of complex ligand binding which is could be due to the numerical inaccessibility of ligand-induced protein conformational changes.  相似文献   

17.

Background

Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized. Based on a recent discovery that the disaccharide L4, a KS component that contains 6-sulfo-Gal, exhibits anti-inflammatory activity in mouse lung, we hypothesized that L4-related compounds are useful tools for characterizing the langerin-ligand interactions and their therapeutic application.

Methods

We performed binding analysis between purified long and short forms of langerin and a series of KS disaccharide components. We also chemically synthesized oligomeric derivatives of L4 to develop a new high-affinity ligand of langerin.

Results

We show that the binding critically requires the 6-sulfation of Gal and that the long form of langerin displays higher affinity than the short form. The synthesized trimeric (also designated as triangle or Tri) and polymeric (pendant) L4 derivatives displayed over 1000-fold higher affinity toward langerin than monomeric L4. The pendant L4, but not the L4 monomer, was found to effectively transduce langerin signaling in a model cell system.

Conclusions

L4 is a specific ligand for langerin. Oligomerization of L4 unit increased the affinity toward langerin.

General significance

These results suggest that oligomeric L4 derivatives will be useful for clarifying the langerin functions and for the development of new glycan-based anti-inflammatory drugs.  相似文献   

18.
19.
20.

Background

G-quadruplex has been viewed as a promising therapeutic target in oncology due to its potentially important roles in physiological and pathological processes. Emerging evidence suggests that the biological functions of G-quadruplexes are closely related to the binding of some proteins. Insulin-like growth factor type I (IGF-1), as a significant modulator of cell growth and development, may serve as a quadruplex-binding protein.

Methods

The binding affinity and selectivity of IGF-1 to different DNA motifs in solution were measured by using fluorescence spectroscopy, Surface Plasmon Resonance (SPR), and force-induced remnant magnetization (FIRM). The effects of IGF-1 on the formation and stability of G-quadruplex structures were evaluated by circular dichroism (CD) and melting fluorescence resonance energy transfer (FRET) spectroscopy. The influence of quadruplex-specific ligands on the binding of G-quadruplexes with IGF-1 was determined by FIRM.

Results

IGF-1 shows a binding specificity for G-quadruplex structures, especially the G-quadruplex structure with a parallel topology. The quadruplex-specific ligands TMPyP4 and PDS (Pyridostatin) can inhibit the interaction between G-quadruplexes and proteins.

Conclusions

IGF-1 is demonstrated to selectively bind with G-quadruplex structures. The use of quadruplex-interactive ligands could modulate the binding of IGF-1 to G-quadruplexes.

General significance

This study provides us with a new perspective to understand the possible physiological relationship between IGF-1 and G-quadruplexes and also conveys a strategy to regulate the interaction between G-quadruplex DNA and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号