首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine decarboxylase (ODC) and the antizyme inhibitors (AZIN1 and AZIN2), regulatory proteins of polyamine levels, are antizyme‐binding proteins. Although it is widely recognized that ODC is mainly a cytosolic enzyme, less is known about the subcellular distribution of AZIN1 and AZIN2. We found that these proteins, which share a high degree of homology in their amino acid sequences, presented differences in their subcellular location in transfected mammalian cells. Whereas ODC was mainly present in the cytosol, and AZIN1 was found predominantly in the nucleus, interestingly, AZIN2 was located in the ER‐Golgi intermediate compartment (ERGIC) and in the cis‐Golgi network, apparently not related to any known cell‐sorting sequence. Our results rather suggest that the N‐terminal region may be responsible for this particular location, since its deletion abrogated the incorporation of the mutated AZIN2 to the ERGIC complex and, on the other hand, the substitution of this sequence for the corresponding sequence in ODC, translocated ODC from cytosol to the ERGIC compartment. Furthermore, the coexpression of AZIN2 with any members of the antizyme family induced a shift of AZIN2 from the ERGIC to the cytosol. These findings underline the complexity of the AZs/AZINs regulatory system, supporting early evidence that relates these proteins with additional functions other than regulating polyamine homeostasis. J. Cell. Biochem. 107: 732–740, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM.  相似文献   

3.
Acetohydroxyacid synthase (AHAS) catalyzes the production of acetolactate from pyruvate. The enzyme from the hyperthermophilic bacterium Thermotoga maritima has been purified and characterized (kcat ~100 s?1). It was found that the same enzyme also had the ability to catalyze the production of acetaldehyde and CO2 from pyruvate, an activity of pyruvate decarboxylase (PDC) at a rate approximately 10% of its AHAS activity. Compared to the catalytic subunit, reconstitution of the individually expressed and purified catalytic and regulatory subunits of the AHAS stimulated both activities of PDC and AHAS. Both activities had similar pH and temperature profiles with an optimal pH of 7.0 and temperature of 85 °C. The enzyme kinetic parameters were determined, however, it showed a non-Michaelis-Menten kinetics for pyruvate only. This is the first report on the PDC activity of an AHAS and the second bifunctional enzyme that might be involved in the production of ethanol from pyruvate in hyperthermophilic microorganisms.  相似文献   

4.
Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.  相似文献   

5.
Currently, l-serine is mainly produced by enzymatic conversion, in which serine hydroxymethyltransferase (SHMT) is the key enzyme, suggesting the importance of searching for a SHMT with high activity. Shewanella algae, a methanol-utilizing marine bacterium showing high SHMT activity, was selected based on screening bacterial strains and comparison of the activities of SHMTs. A glyA was isolated from the S. algae through thermal asymmetric interlaced PCR (TAIL-PCR) and it encoded a 417 amino acid polypeptide. The SaSHMT, encoded by the glyA, showed the optimal activity at 50 °C and pH 7.0, and retained over 45% of its maximal activity after incubation at 40 °C for 3 h. The enzyme showed better stability under alkaline environment (pH 6.5–9.0) than Hyphomicrobium methylovorum GM2's SHMT (pH 6.0–7.5). The SaSHMT can produce 77.76 mM of l-serine by enzymatic conversion, with the molecular conversion rate in catalyzing glycine to l-serine being 1.41-fold higher than that of Escherichia coli. Therefore, the SaSHMT has the potential for industrial applications due to its tolerance of alkaline environment and a relatively high enzymatic conversion rate.  相似文献   

6.
We attempted to optimize sulfonamide-based non-alkyne LpxC inhibitors by focusing on improvements in enzyme inhibitory and antibacterial activity. It was discovered that inhibitors possessing 2-aryl benzofuran as a hydrophobe exhibited good activity. In particular, compound 21 displayed impressive antibacterial activity (E. coli MIC = 0.063 μg/mL, K. pneumoniae MIC = 0.5 μg/mL, and P. aeruginosa MIC = 0.5 μg/mL), and is a promising lead for further exploration as an antibacterial agent.  相似文献   

7.
A sulfonamidebenzamide series was assessed for anti-kinetoplastid parasite activity based on structural similarity to the antiparasitic drug, nifurtimox. Through structure-activity optimization, derivatives with limited mammalian cell toxicity and increased potency toward African trypanosomes and Leishmania promastigotes were developed. Compound 22 had the best potency against the trypanosome (EC50 = 0.010 μM) while several compounds showed ~10-fold less potency against Leishmania promastigotes without impacting mammalian cells (EC50 > 25 μM). While the chemotype originated from an unrelated optimization program aimed at selectively activating an apoptotic pathway in mammalian cancer cells, our preliminary results suggest that a distinct mechanism of action from that observed in mammalian cells is responsible for the promising activity observed in parasites.  相似文献   

8.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis was highly purified from the thermophilic bacterium Thermus thermophilus. The enzyme preparation showed a single band on SDS-polyacrylamide gel electrophoresis, a pH optimum of 7.5 and a temperature optimum at 60°C. The native enzyme which is phosphorylated could, upon treatment with alkaline phosphatase, lose all activity. The inactive form could be reversibly activated by nucleotides in the order of NTP>NDP>NMP. When physiological polyamines were added to the purified enzyme in vitro, spermine or spermidine activated ODC by 140 or 40%, respectively, while putrescine caused a small inhibition. The basic amino acids lysine and arginine were competitive inhibitors of ODC, while histidine did not affect the enzyme activity. Among the phosphoamino acids tested, phosphoserine was the most effective activator of purified ODC. Polyamines added at high concentration to the medium resulted in a delay or in a complete inhibition of the growth of T. thermophilus, and in a decrease of the specific activity of ornithine decarboxylase. The decrease of ODC activity resulted from the appearance of a non-competitive inhibitor of ODC, the antizyme (Az). The T. thermophilus antizyme was purified by an ODC-Sepharose affinity column chromatography, as well as by immunoprecipitation using antibodies raised against the E. coli antizyme. The antizyme of E. coli inhibited the ODC of T. thermophilus, and vice versa. The fragment of amino acids 56-292 of the E. coli antizyme, produced as a fusion protein of glutathione S-transferase, did not inhibit the ODC of E. coli or T. thermophilus.  相似文献   

9.

Background

Ornithine decarboxylase (ODC), the key enzyme in the polyamine biosynthetic pathway, is highly regulated by antizymes (AZs), small proteins that bind and inhibit ODC and increase its proteasomal degradation. Early studies delimited the putative AZ-binding element (AZBE) to the region 117-140 of ODC. The aim of the present work was to study the importance of certain residues of the region 110-142 that includes the AZBE region for the interaction between ODC and AZ1 and the ODC functionality.

Methods

Computational analysis of the protein sequences of the extended AZBE site of ODC and ODC paralogues from different eukaryotes was used to search for conserved residues. The influence of these residues on ODC functionality was studied by site directed mutagenesis, followed by different biochemical techniques.

Results

The results revealed that: a) there are five conserved residues in ODC and its paralogues: K115, A123, E138, L139 and K141; b) among these, L139 is the most critical one for the interaction with AZs, since its substitution decreases the affinity of the mutant protein towards AZs; c) all these conserved residues, with the exception of A123, are critical for ODC activity; d) substitutions of K115, E138 or L139 diminish the formation of ODC homodimers.

Conclusions

These results reveal that four of the invariant residues of the AZBE region are strongly related to ODC functionality.

General significance

This work helps to understand the interaction between ODC and AZ1, and describes various new residues involved in ODC activity, a key enzyme for cell growth and proliferation.  相似文献   

10.
This study shows that the cyclization of l-DMDP thioureas to bicyclic l-DMDP isothioureas improved α-l-rhamnosidase inhibition which was further enhanced by increasing the length of the alkyl chain. The addition of a long alkyl chain, such as decyl or dodecyl, to the nitrogen led to the production of highly potent inhibitors of α-l-rhamnosidase; it also caused broad inhibition spectrum against β-glucosidase and β-galactosidase. In contrast, the corresponding N-benzyl-l-DMDP cyclic isothioureas display selective inhibition of α-l-rhamnosidase; 3′,4′-dichlorobenzyl-l-DMDP cyclic isothiourea (3r) was found to display the most potent and selective inhibition of α-l-rhamnosidase, with IC50 value of 0.22 μM, about 46-fold better than the positive control 5-epi-deoxyrhamnojirimycin (5-epi-DRJ; IC50 = 10 μM) and occupied the active-site of this enzyme (Ki = 0.11 μM). Bicyclic isothioureas of ido-l-DMDP did not inhibit α-l-rhamnosidase. These new mimics of l-rhamnose may affect other enzymes associated with the biochemistry of rhamnose including enzymes involved in progression of tuberculosis.  相似文献   

11.
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a simplified procedure including a heat-treatment step followed by chromatography. A discontinuous colorimetric assay method was optimized and used to determine the kinetic parameters. AHAS activity was determined to be present in several Thermotogales including T. maritima. The catalytic subunit of T. maritima AHAS was purified approximately 30-fold, with an AHAS activity of approximately 160±27 U/mg and native molecular mass of 156±6 kDa. The regulatory subunit was purified to homogeneity and showed no catalytic activity as expected. The optimum pH and temperature for AHAS activity were 7.0 and 85 °C, respectively. The apparent Km and Vmax for pyruvate were 16.4±2 mM and 246±7 U/mg, respectively. Reconstitution of the catalytic and regulatory subunits led to increased AHAS activity. This is the first report on characterization of an isoleucine, leucine, and valine operon (ilv operon) enzyme from a hyperthermophilic microorganism and may contribute to our understanding of the physiological pathways in Thermotogales. The enzyme represents the most active and thermostable AHAS reported so far.  相似文献   

12.
Investigations were conducted on the production of Rennin enzyme from the fungi Rhizomucor miehei 3420 NRRL using Solid-State fermentation. Wheat bran was used as a substrate. The influence of moisture content, incubation temperature, and the initial pH of fermentation medium were studied. The protein content, milk clotting activity (MCA), specific activity, proteolytic activity (PA), and (MCA/PA) ratio of the extracted enzyme were calculated after 4 days of incubation to evaluate the quality of the enzyme. The results showed that the optimal conditions for production were as follows: incubation temperature of 40 °C, moisture content of 60%, and pH of (3). Under these conditions, a production process of Rennin enzyme was established, and the values of protein content, milk clotting activity, specific activity, proteolytic activity, and (MCA/PA) ratio reached to 4 mg/mL, 600 SU/mL, 150 SU/mg, 45 PU/mL, 13.3 respectively.  相似文献   

13.
Allicin, an extremely active constituent of freshly crushed garlic, is produced upon reaction of alliin with the enzyme alliinase (EC 4.4.1.4). A bacterium Cupriavidus necator with the ability of alliinase production was isolated from a soil sample and was identified by morphological, biochemical and 16S rRNA sequence. Alliinase production was optimised and it was further purified to apparent homogeneity with 103-fold purification and specific activity of 209 U/mg of protein by using DEAE Cellulose and Sephadex G-100 chromatography. The enzyme is a homodimer of molecular weight 110 kDa with two subunits of molecular weight 55 kDa each. The optimum activity of the purified enzyme was found at pH 7 and the optimum temperature was 35 °C. The enzyme exhibited maximum reaction rate (Vmax) at 74.65 U/mg and Michaelis–Menten constant (Km) was determined to be 0.83 mM when alliin was used as a substrate. The cytotoxic activity of in-situ generated allicin using purified alliinase and alliin was assessed on MIA PaCa-2 cell line using MTT assay and Acridine orange–ethidium bromide staining. This approach of in-situ allicin generation suggests a novel therapeutic strategy wherein alliin and alliinase work together synergistically to produce cytotoxic agent allicin.  相似文献   

14.
A novel series of 2-((5,6-diphenyl-1,2,4-triazin-3-yl)thio)-N-arylacetamides 5a5q have been synthesized and evaluated for their α-glucosidase inhibitory activity. All newly synthesized compounds exhibited potent α-glucosidase inhibitory activity in the range of IC50 = 12.46 ± 0.13–72.68 ± 0.20 μM, when compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μM). Among the series, compound 5j (12.46 ± 0.13 μM) with strong electron-withdrawing nitro group on the arylacetamide moiety was identified as the most potent inhibitor of α-glucosidase. Molecular docking study was carried out to explore the binding interactions of these compounds with α-glucosidase. Our study identifies a novel series of potent α-glucosidase inhibitors for further investigation.  相似文献   

15.
This study mainly focused on the modification of the X2 position in febuxostat analogs. A series of 1-phenyl-1H-1,2,3-triazole-4-carboxylic acid derivatives (1a-s) with an N atom occupying the X2 position was designed and synthesized. Evaluation of their inhibitory potency in vitro on xanthine oxidase indicated that these compounds exhibited micromolar level potencies, with IC50 values ranging from 0.21 µM to 26.13 μM. Among them, compound 1s (IC50 = 0.21 μM) showed the most promising inhibitory effects and was 36-fold more potent than allopurinol, but was still 13-fold less potent than the lead compound Y-700, which meant that a polar atom fused at the X2 position could be unfavorable for potency. The Lineweaver-Burk plot revealed that compound 1s acted as a mixed-type xanthine oxidase inhibitor. Analysis of the structure-activity relationships demonstrated that a more lipophilic ether tail (e.g., meta-methoxybenzoxy) at the 4′-position could benefit the inhibitory potency. Molecular modeling provided a reasonable explanation for the structure–activity relationships observed in this study.  相似文献   

16.
A series of 1-[(methylsulfonyl)methyl]-2-nitro-5,6,7,8-tetrahydroindolizines and homologs were designed, prepared, and evaluated as non-sugar-type α-glucosidase inhibitors. The inhibitory activity appeared to be related to cyclo homologation with the best congeners being tetrahydroindolizines. The introduction of a methoxycarbonyl group as an additional hydrogen bond acceptor into the exocyclic methylene group was beneficial affording the most potent congener 3e (half maximal inhibitory concentration, IC50 = 8.0 ± 0.1 μM) which displayed 25-fold higher inhibitory activity than 1-deoxynojirimycin (2, IC50 = 203 ± 9 μM)—the reference compound. Kinetic analysis indicated that compound 3e is a mixed inhibitor with preference for the free enzyme over the α-glucosidase–substrate complex (Ki,free = 3.6 μM; Ki,bound = 7.6 μM). Molecular docking experiments were in agreement with kinetic results indicating reliable interactions with both the catalytic cleft and other sites. Circular dichroism spectroscopy studies suggested that the inhibition exerted by 3e may involve changes in the secondary structure of the enzyme. Considering the relatively low molecular weight of 3e together with its high fraction of sp3 hybridized carbon atoms, this nitro-substituted tetrahydroindolizine may be considered as a good starting point towards new leads in the area of α-glucosidase inhibitors.  相似文献   

17.
Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1′-P2′ tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.  相似文献   

18.

Objective

Gentamicin (GM) is an effective antibiotic against severe infection but has limitations related to nephrotoxicity. In this study, we investigated whether benfotiamine (BFT) and coenzyme Q10 (CoQ10), could ameliorate the nephrotoxic effect of GM in rats.

Methods

Rats were divided into five groups. Group 1 and 2 served as control and sham respectively, Group 3 as GM group, Group 4 as GM + CoQ10 and Group 5 as GM + BFT for 8 days. At the end of the study, all rats were euthanized by cervical decapitation and then blood samples and kidneys were collected for further analysis. Serum urea, creatinine, cytokine TNF-a, oxidant and antioxidant parameters, as well as histopathological examination of kidney tissues were assessed.

Results

Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated serum creatinine, urea and KIM-1 level as compared with the controls. Moreover, a significant increase in serum malondialdehyde, reduced glutathione. Histopathological examination of renal tissue in gentamisin administered group, there were extremly pronounced necrotic tubules in the renal cortex and hyalen cast accumulation in the medullar tubuli. BFT given to GM rats reduced these nephrotoxicity parameters. Serum creatinine, urea, and KIM-1 were almost normalized in the GM + BFT group. Benfotiamin treatment was significantly decreased necrotic tubuli and hyalen deposition in gentamisin plus benfotiamin group. CoQ10 given to GM rats did not cause any statistically significant alterations in these nephrotoxicity parameters when compared with GM group but histopathological examination of renal tissue in GM + CoQ10 administered group, CoQ10 treatment was decreased necrotic tubuli rate and hyalen accumulation in tubuli.

Conclusion

The results from our study indicate that BFT supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells.  相似文献   

19.
This paper describes a facile protocol, efficient, and environmentally benign for the synthesis a series of barbiturate acid substituted at C5 position 3a–o. The desired compounds subjected in vitro for different set of bioassays including against anti-oxidant (DPPH and super oxide scavenger assays), anti-cancer, α-glucosidase and β-glucuronidase inhibitions. Compound 3m (IC50 = 22.9 ± 0.5 μM) found to be potent α-glucosidase enzyme inhibitors and showed more activity than standard acarbose (IC50 = 841 ± 1.73 μM). Compound 3f (IC50 = 86.9 ± 4.33 μM) found to be moderate β-Glucuronidase enzyme inhibitors and showed activity comparatively less than the standard d-saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 μM). Furthermore, in sillico investigation was carried out to investigate bonding mode of barbiturate acid derivatives.  相似文献   

20.
A new γ-carbonic anhydrase (CA, EC 4.1.1.1) was cloned and characterized kinetically in the genome of the bacterial pathogen Burkholderia pseudomallei, the etiological agent of melioidosis, an endemic disease of tropical and sub-tropical regions of the world. The catalytic activity of this new enzyme, BpsCAγ, is significant with a kcat of 5.3 × 105 s?1 and kcat/Km of 2.5 × 107 M?1 × s?1 for the physiologic CO2 hydration reaction. The inhibition constant value for this enzyme for 39 sulfonamide inhibitors was obtained. Acetazolamide, benzolamide and metanilamide were the most effective (KIs of 149–653 nM) inhibitors of BpsCAγ activity, whereas other sulfonamides/sulfamates such as ethoxzolamide, topiramate, sulpiride, indisulam, sulthiame and saccharin were active in the micromolar range (KIs of 1.27–9.56 μM). As Burkholderia pseudomallei is resistant to many classical antibiotics, identifying compounds that interfere with crucial enzymes in the B. pseudomallei life cycle may lead to antibiotics with novel mechanisms of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号