首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The midbody is an electron-dense structure that forms between two dividing daughter cells, and a midbody remnant is left after completion of cell separation. This structure has been regarded as a piece of cellular debris, but two recent papers suggest an unexpected function for the midbody remnant in promoting an undifferentiated cellular phenotype.  相似文献   

2.
3.
4.
5.
Gene duplication events are important sources of novel gene functions. However, more often than not, a duplicate gene may lose its function and become a pseudogene. What is the relative frequency of these two scenarios: functional divergence versus gene loss? Given that most non-neutral mutations are deleterious, gene loss should be far more frequent than divergence. However, a recent empirical study suggests that about 50% of all gene duplications will lead to functional divergence. The study infers the frequency of functional divergence from the size distribution of gene families produced by two successive genome duplications early in vertebrate evolution. Reasons for this unexpectedly high frequency of functional divergence are discussed.  相似文献   

6.
7.
Engelender S 《Autophagy》2012,8(3):418-420
The accumulation of α-synuclein is critical for the development of Parkinson disease (PD), and unraveling the mechanisms that regulate α-synuclein levels is key to understanding the pathophysiology of the disease. We recently found that USP9X deubiquitinates α-synuclein, and that this process determines the partition of α-synuclein between the proteasomal and autophagy pathways. By manipulating USP9X levels, we observed that monoubiquitinated α-synuclein is degraded by the proteasome, whereas deubiquitination of α-synuclein favors its degradation by autophagy. As USP9X levels and activity are decreased in α-synucleinopathy brains, USP9X may now represent a novel target for PD.  相似文献   

8.
Proper growth and development of multicellular organisms require the tight regulation of cell growth, cell division and cell death. A recent study has identified a novel regulatory link between two of these processes: cell growth and cell death.  相似文献   

9.
BackgroundApolipoprotein A-I (apoA-I) protects against atherosclerosis and participates in the removal of excess cellular cholesterol from peripheral organs. Several naturally occurring apoA-I mutations are associated with familial systemic amyloidosis, with deposition of amyloid aggregates in peripheral organs, resulting in multiple organ failure. Systematic studies on naturally occurring variants are needed to delineate their roles and involvement in pathogenesis.MethodsWe performed a comparative structure–function analysis of five naturally occurring apoA-I variants and the wild-type protein. Circular dichroism, Fourier-transform infrared spectroscopy, thioflavin T and congo red fluorescence assays, thermal, chemical, and proteolytic stability assays, and 1,2-Dimyristoyl-sn-glycero-3-phosphocholine clearance analyses were used to assess the effects of mutations on the structure, function, stability, aggregation, and proteolytic susceptibility of the proteins to explore the mechanisms underlying amyloidosis and hypercholesterolemia.ResultsWe observed structural changes in the mutants independent of fibril formation, suggesting the influence of the surrounding environment. The mutants were involved in aggregate formation to varying degree; L170P, R173P, and V156E showed an increased propensity to aggregate under different physiological conditions. β sheet formation indicates that L170P and R173P participate in amyloid formation. Compared to WT, V156E and L170P exhibited higher capacity for lipid clearance.ConclusionsThe selected point mutations, including those outside the hot spot regions of apoA-I structure, perturb the physiochemical and conformational behavior of the protein, influencing its function.General significanceThe study provides insights into the structure–function relationships of naturally occurring apoA-I variants outside the hot spot mutation sites.  相似文献   

10.
11.
Epithelial cells often produce extensions, known variously as filopodia, cell feet or cytonemes, which can extend across many cell diameters to directly contact non-adjacent cells. Do they function in morphogenesis, cell–cell signaling or both?.  相似文献   

12.
13.
Cell polarity: intrinsic or externally imposed?   总被引:1,自引:0,他引:1  
A basic question in studies of the genesis of cell polarity is whether the polarity is an intrinsic and permanent property of cells or whether it is externally imposed by signals at the cell periphery. Current models favor the possibility that an external signal selectively imposes a polarized cell morphology. However, recent data from different experimental systems are discussed here that support the idea that an intrinsic polarity in animal cells is maintained through a dynamic process involving specific activities of the cortical microfilament system and the centrosome-microtubule complex. In this view, external signals capable of modulating cell polarity, for example, during chemotaxis or histogenesis, do so by acting on mechanisms that maintain cells permanently polarized. The contribution of the cytoskeleton to the genesis of cell polarity is discussed, with particular reference to experimental evidence for global cytoskeletal dynamics, and it is suggested that critical advances in our understanding of the maintenance of cell polarity will depend on our obtaining further knowledge of the molecular mechanisms controlling interactions between microtubules and microfilaments. Microtubules appear to exert an inhibitory control on the recruitment of cytoplasmic myosin into the cortex, and there are data indicating that the centrosome and centrioles could actively contribute to the establishment of cell polarity.  相似文献   

14.
15.
16.
Silencing one X chromosome is essential for the development of female mammals, but the regulation of this process appears to vary between species. In the mouse, which has thus far been the leading model system in the field, X chromosome inactivation (XCI) is tightly coupled to pluripotency and the underlying mechanisms have just begun to be deciphered. However, mechanistic aspects of XCI regulation in other species have yet to be thoroughly investigated. Here we review current knowledge of the developmental regulation of XCI in mice and humans and discuss the extent to which the intimate link between XCI and pluripotency extends beyond rodents.  相似文献   

17.
European forests are populated with a variety of wind‐pollinated tree species. Their pollen productivity and spatio‐temporal pattern are largely unknown. Long‐term data (17 years) collected at 22 sites across Austria were presented and the pollen production of 12 tree genera was analysed. We ranked the tree genera according to their pollen productivity taking actual tree abundances of the Austrian Forestry Inventory into account. The productivity varied strongly among tree genera with a maximum for Betula. Pollen production in Larix, Abies and Picea amounted to approximately 1/20, while in increasing order Salix, Quercus, Alnus, Populus and Fraxinus produced approximately 1/3 to 1/4 of the respective Betula estimate. In general, pollen quantity in broadleaves was higher than in conifers. We analysed the temporal pollen production pattern by means of hierarchical cluster analysis and identified three major groups: [(Fagus, Larix, Picea, Abies), (Alnus, Betula, Fraxinus)], [Carpinus],[Populus, Salix, Pinus, Quercus]. Distance matrices based on life‐history traits as well as molecular phylogeny were also constructed; they correlated significantly with each other by means of Mantel‐tests. However, there was no significant relationship between the distances on temporal pollen production with the other matrices. Intermittent or idiosyncratic pollen production was studied by means of deviation from expected means, skewness and spindle diagrams. We proposed that Fagus, Carpinus, Larix, Picea and Abies belong to ‘masting pollen producers’, while the remaining genera idiosyncratically produced pollen over the monitored period. Moreover we correlated the distance matrix of pollen production for each tree genus at each sampling site with respective ‘ecological distance matrices’ based on aerial and altitudinal distance among sites. Significant correlations were detected for tree genera (Fagus, Larix, Picea) which were also prone to pollen masting, thus indicating a Moran effect.  相似文献   

18.
Cell cycle regulation in the postmitotic neuron: oxymoron or new biology?   总被引:3,自引:0,他引:3  
Adult CNS neurons are typically described as permanently postmitotic but there is probably nothing permanent about the neuronal cell cycle arrest. Rather, it appears that these highly differentiated cells must constantly keep their cell cycle in check. Relaxation of this vigilance leads to the initiation of a cell cycle and entrance into an altered and vulnerable state, often leading to death. There is evidence that neurons which are at risk of neurodegeneration are also at risk of re-initiating a cell cycle process that involves the expression of cell cycle proteins and DNA replication. Failure of cell cycle regulation might be a root cause of several neurodegenerative disorders and a final common pathway for others.  相似文献   

19.
The specification of cell fate is integral to embryonic development. Recent research has identified several molecules that are involved in the development of the embryonic vasculature. Their combined actions are required for the specification and development of the arteries, veins and lymphatic vessels; vascular networks that are vital for embryonic and adult survival, and whose malfunction causes major pathological disorders. Recent discoveries have impacted our understanding of the embryonic origins of arterial, venous and lymphatic endothelial cells and the signals that mediate their navigation into mature, functional circulatory systems.  相似文献   

20.
Islet amyloid polypeptide (IAPP; amylin) is responsible for amyloid formation in type-2 diabetes. Not all organisms form islet amyloid, and amyloid formation correlates strongly with variations in primary sequence. Studies of human and rodent IAPP have pointed to the amino acid residues 20-29 region as the important amyloid-modulating sequence. The rat 20-29 sequence contains three proline residues and does not form amyloid, while the human sequence contains no proline and readily forms amyloid. This has led to the view that the 20-29 region constitutes a critical amyloidogenic domain that dictates the properties of the entire sequence. The different behavior of human and rat IAPP could be due to differences in the 20-29 region or due simply to the fact that multiple proline residues destabilize amyloid fibrils. We tested how critical the 20-29 region is by studying a variant identical with the human peptide in this segment but with three proline residues outside this region. We designed a variant of the amyloidogenic 8-37 region of human IAPP (hIAPP(8-37) 3xP) with proline substitutions at positions 17, 19 and 30. Compared to the wild-type, the 3xP variant was much easier to synthesize and had dramatically greater solubility. Fourier transform infra red spectroscopy, transmission electron microscopy, Congo red staining and thioflavin-T binding indicate that this variant has a reduced tendency to form beta-sheet structure and forms deposits with much less structural order than the wild-type. Far-UV CD studies show that the small amount of beta-sheet structure developed by hIAPP(8-37) 3xP after long periods of incubation dissociates readily into random-coil structure upon dilution into Tris buffer. The observation that proline substitutions outside the putative core domain effectively abolish amyloid formation indicates that models of IAPP aggregation must consider contributions from other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号