首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

2.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

3.
Spontaneously hypertensive rats (SHRs) are used as a model for attention-deficit/hyperactivity disorder (ADHD), since SHRs are hyperactive and show defective sustained attention in behavioral tasks. The psychostimulants amphetamine and methylphenidate and the selective norepinephrine reuptake inhibitor atomoxetine are used as ADHD medications. The effects of high K+ stimulation or psychostimulants on brain norepinephrine or dopamine release in SHRs have been previously studied both in vitro and in vivo, but the effects of atomoxetine on these neurotransmitters have not. The present study examined the effects of administration of atomoxetine on extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex of juvenile SHRs and Wistar-Kyoto (WKY) rats. Baseline levels of prefrontal norepinephrine, dopamine, and serotonin were similar in SHRs and WKY rats. Systemic administration of atomoxetine (3 mg/kg) induced similar increases in prefrontal norepinephrine and dopamine, but not serotonin, levels in both strains. Furthermore, there was no difference in high K+-induced increases in extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex between SHRs and WKY rats. These findings indicate that monoamine systems in the prefrontal cortex are similar between SHRs and WKY rats.  相似文献   

4.
Abstract: In vivo microdialysis was used to assess the hypothesis that the stress-induced increase in dopamine release in the prefrontal cortex is mediated by stress-activated glutamate neurotransmission in this region. Local perfusion of an α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, blocked the stress-induced increase in dopamine levels, whereas an NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid, at the dose tested, was not able to alter this response significantly. These data indicate that the effect of stress on dopamine release in the prefrontal cortex is mediated locally by activation of AMPA/kainate receptors, which modulate the release of dopamine in this region.  相似文献   

5.
Evoked Extracellular Dopamine In Vivo in the Medial Prefrontal Cortex   总被引:5,自引:2,他引:3  
Abstract: The measurement of evoked extracellular dopamine in the medial prefrontal cortex by using fast-scan cyclic voltammetry with carbon-fiber microelectrodes was established and release characteristics of mesoprefrontal dopamine neurons were examined in vivo in anesthetized rats. Despite the sparse dopaminergic innervation and the presence of more dense noradrenergic and serotonergic innervations overall in the medial prefrontal cortex, the measurement of extracellular dopamine was achieved by selective recording in dopamine-rich terminal fields and selective activation of ascending dopamine neurons. This was confirmed by electrochemical, pharmacological, and anatomical evidence. An increased release capacity for mesoprefrontal dopamine neurons was also demonstrated by the slower decay of the evoked dopamine response after inhibition of catecholamine synthesis and the maintenance of the evoked dopamine response at higher levels in the medial prefrontal cortex compared with the striatum during supraphysiological stimulation.  相似文献   

6.
The present study investigated whether 5-HT(2C) receptors in the ventrotegmental area and prefrontal cortex regulate basal and stimulus-evoked dopamine release in the prefrontal cortex. Using the in vivo microdialysis technique in conscious rats, we studied the effect of a selective 5-HT(2C) receptor agonist, Ro60-0175, on basal and immobilization stress-induced dopamine release in the prefrontal cortex. Ro60-0175 intraperitoneally (2.5 mg/kg) and into the ventrotegmental area (10 microg/0.5 microL) completely antagonized the effect of stress on extracellular dopamine without altering basal levels. Infusion of 10 microm Ro60-0175 through the cortical probe had no significant effect on basal and stress-induced dopamine release. SB242084 (10 mg/kg), a selective antagonist of 5-HT(2C) receptors, significantly increased basal extracellular dopamine and completely prevented the effect of intraperitoneal and intraventrotegmental Ro60-0175 on the stress-induced rise of extracellular dopamine, but had no effect itself in stressed rats. The results show that Ro60-0175 suppresses cortical dopamine release induced by immobilization stress through the stimulation of 5-HT(2C) receptors in the ventrotegmental area. While confirming that endogenous 5-HT acting on 5-HT(2C) receptors tonically inhibit basal dopamine release in the prefrontal cortex, the present findings suggest that the stimulation of 5-HT(2C) receptors with an exogenous agonist preferentially inhibit stimulated release.  相似文献   

7.
The effect of the anxiogenic beta-carboline methyl-beta-carboline-3-carboxyamide (FG 7142) on dopamine release in prefrontal cortex and striatum in the awake freely moving rat was determined using the technique of microdialysis. FG 7142 (25 mg/kg, i.p.) caused a time-dependent increase in dopamine release in prefrontal cortex which was statistically significantly greater than the response to vehicle administration. Dopamine release in striatum was unaltered by FG 7142. Pretreatment of animals with the benzodiazepine antagonist Ro 15-1788 (30 mg/kg, i.p., 15 min prior to FG 7142 administration) completely abolished the increase in dopamine release caused by FG 7142 in prefrontal cortex. These data indicate that the anxiogenic benzodiazepine inverse agonist FG 7142 can selectively increase dopamine release in prefrontal cortex, and that this effect appears to be mediated via the gamma-aminobutyric acid/benzodiazepine receptor complex.  相似文献   

8.
In vivo microdialysis has been used to study the acute effects of antipsychotic drugs on the extracellular level of dopamine from the nucleus accumbens, striatum, and prefrontal cortex of the rat. (-)-Sulpiride (20, 50, and 100 mg/kg i.v.) and haloperidol (0.1 and 0.5 mg/kg i.v.) enhanced the outflow of dopamine in the striatum and nucleus accumbens. In the medial prefrontal cortex, (-)-sulpiride at all doses tested did not significantly affect the extracellular level of dopamine. The effect of haloperidol was also attenuated in the medial prefrontal cortex; 0.1 mg/kg did not increase the outflow of dopamine and the effect of 0.5 mg/kg haloperidol was of shorter duration in the prefrontal cortex than that observed in striatum and nucleus accumbens. The atypical antipsychotic drug clozapine (5 and 10 mg/kg) increased the extracellular concentration of dopamine in all three regions. In contrast to the effects of sulpiride and haloperidol, that of clozapine in the medial prefrontal cortex was profound. These data suggest that different classes of antipsychotic drugs may have distinct effects on the release of dopamine from the nigrostriatal, mesolimbic, and mesocortical terminals.  相似文献   

9.
The orexigenic peptide ghrelin plays a prominent role in the regulation of energy balance and in the mediation of reward processes and reinforcement for addictive drugs, such as nicotine. Nicotine is the principal psychoactive component in tobacco, which is responsible for addiction and relapse of smokers. Ghrelin and nicotine activates the mesolimbicocortical dopaminergic pathways via growth hormone secretagogue receptors (GHS-R1A) and nicotinic acetylcholine receptors (nAchR), respectively, resulting in the release of dopamine in the nucleus accumbens, the amygdala and the prefrontal cortex. In the present study an in vitro superfusion of rat amygdalar slices was performed in order to investigate the direct action of ghrelin and nicotine on the amygdalar dopamine release. Ghrelin increased significantly the dopamine release from the rat amygdala following electrical stimulation. This effect was inhibited by both the selective GHS-R1A antagonist GHRP-6 and the selective nAchR antagonist mecamylamine. Under the same conditions, nicotine also increased significantly the dopamine release from the rat amygdala. This effect was antagonized by mecamylamine, but not by GHRP-6. Co-administration of ghrelin and nicotine induced a similar increase of amygdalar dopamine release. This stimulatory effect was partially reversed by both GHRP-6 and mecamylamine. The present results demonstrate that both ghrelin and nicotine stimulates directly the dopamine release in the amygdala, an important dopaminergic target area of the mesolimbicocortical pathway.  相似文献   

10.
Abstract: In vivo microdialysis was used to determine whether the 3,4-methylenedioxymethamphetamine (MDMA)-induced release of serotonin (5-HT) in vivo involves a carrier-mediated process and to investigate further the state-dependent interaction between 5-HT and dopamine. MDMA produced a dose-dependent increase in the extracellular concentration of 5-HT in the striatum and prefrontal cortex that was attenuated by treatment with fluoxetine but not by tetrodotoxin. Suppression by fluoxetine of the MDMA-induced release of 5-HT was accompanied by a suppression of the MDMA-induced release of dopamine. Administration of MDMA to rats treated with carbidopa and l -5-hydroxytryptophan resulted in a synergistic elevation of the extracellular concentration of 5-HT that was much greater than that produced by either treatment alone. The MDMA-induced release of dopamine by MDMA also was potentiated in 5-hydroxytryptophan-treated rats. These data are consistent with the view that MDMA increases the extracellular concentration of 5-HT by facilitating carrier-mediated 5-HT release, which can be enhanced greatly under conditions in which 5-HT synthesis is stimulated. Moreover, these data are supportive of a state-dependent, stimulatory role of 5-HT in the regulation of dopamine release.  相似文献   

11.
Abstract: On-line in vivo microdialysis was used to determine the effects of a 16-min handling period on release of dopamine (DA) in the nucleus accumbens and of DA and noradrenaline (NA) in the medial prefrontal cortex of awake, freely moving rats. DA and NA were determined in one HPLC run. Handling resulted in an immediate and strong increase of both catecholamines in the prefrontal cortex. Maximal values for DA were 295%, and for NA 225%, of controls. DA in the nucleus accumbens was also increased (to 135% of controls) but only after a short delay. Local inhibition of ionotropic glutamate receptors by continuous reversed dialysis of the drugs 6-cyano-7-nitroquinoxaline, d -2-amino-5-phosphonopentanoic acid, or dizocilpine did not significantly affect handling-induced increases in cortical DA and NA release. Neither did the agonist of metabotropic glutamate receptors, trans -(1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD), or the GABA-B agonist baclofen. Reversed dialysis of dizocilpine in the nucleus accumbens was equally ineffective, but ACPD inhibited the increase in DA release in this area. Stimulation of metabotropic glutamate receptors in the nucleus accumbens was previously reported to inhibit activation of DA release in that area after stimulation of glutamatergic or dopaminergic afferents. It is concluded that metabotropic receptors in the nucleus accumbens are important for the control of activation of DA release in the accumbens by physiological stimuli but that a similar mechanism is lacking in the prefrontal cortex.  相似文献   

12.
Future planning and behavioral modification is thought to require experience-dependent plasticity in neuronal circuits involving the prefrontal cortex, nucleus accumbens and amygdala. Dopamine has been implicated in such plasticity; however, the nature of the adaptive response of dopamine systems to emotionally salient experiences is poorly understood. We determined whether the dopaminergic response to a given stimulus changes after the first exposure to that stimulus and whether this alteration is stimulus specific. Dopamine release was measured in the prefrontal cortex and the nucleus accumbens in response to two aversive but qualitatively distinct stimuli, physical restraint and electrical microstimulation of basolateral amygdala. In the prefrontal cortex, the first exposure to restraint or amygdala stimulation produced similar increases in dopamine release. The second exposure to restraint resulted in an attenuated response (- 36%) whereas the second exposure to amygdala stimulation produced a potentiated response (+ 110%). Cross-modal potentiation of response occurred with both stimuli. These adaptive changes were specific to the prefrontal cortex and were not observed in the nucleus accumbens. These findings demonstrate that prefrontal cortical dopamine output adapts after a single exposure to stimuli with emotional salience. The direction of this adaptation, however, is not uniform and depends on the nature of the stimulus.  相似文献   

13.
Abstract: In radioligand binding studies, BIMG 80, a new putative antipsychotic, displayed good affinity at certain serotonin (5-HT1A, 5-HT2A, 5-HT6), dopamine (D1, D2L, D4), and noradrenergic (α1) receptors. The effect of acute subcutaneous BIMG 80, clozapine, haloperidol, risperidone, amperozide, olanzapine, and Seroquel was then investigated on dopamine release in medial prefrontal cortex, nucleus accumbens, and striatum in freely moving rats using the microdialysis technique. Four different neurochemical profiles resulted from the studies: (a) Systemic administration of BIMG 80, clozapine, and amperozide produced greater percent increases in dopamine efflux in medial prefrontal cortex than in the striatum or the nucleus accumbens. (b) Haloperidol induced a similar increase in dopamine concentrations in the striatum and nucleus accumbens with no effect in the medial prefrontal cortex. (c) Risperidone and olanzapine stimulated dopamine release to a similar extent in all brain regions investigated. (d) Seroquel failed to change significantly dopamine output both in the medial prefrontal cortex and in the striatum. Because an increase in dopamine release in the medial prefrontal cortex may be predictive of effectiveness in treating negative symptoms and in the striatum may be predictive of induction of extrapyramidal side effects, BIMG 80 appears to be a potential antipsychotic compound active on negative symptoms of schizophrenia with a low incidence of extrapyramidal side effects.  相似文献   

14.
Dopamine Autoreceptors Modulate Dopamine Release from the Prefrontal Cortex   总被引:6,自引:2,他引:4  
Electrical stimulation (at 0.3, 1, or 10 Hz, 120 pulses each) produced a calcium-dependent overflow of radioactivity from slices of the rabbit prefrontal cortex preloaded with [3H]3,4-dihydroxyphenylethylamine ([3H]DA, [3H]dopamine) in the presence of desipramine. Flat frequency-release curves were observed. Apomorphine and LY-171555 inhibited in a concentration-dependent fashion the evoked overflow of DA, an effect antagonized by haloperidol. Stimulation frequencies comparable to normal firing rates of mesocortical neurons (10 Hz) drastically reduced apomorphine-induced inhibition of DA overflow. Haloperidol produced greater facilitation of DA overflow at 10 than at 1 Hz. Nomifensine, a neuronal uptake inhibitor, enhanced DA overflow. These results indicate that mesocortical DA neurons projecting to the prefrontal cortex have release modulatory autoreceptors of the D2 subtype.  相似文献   

15.
Abstract: Electrical stimulation of the medial prefrontal cortex caused glutamate release in the ventral tegmental area (VTA) of freely moving animals. Cathodal stimulation was given through monopolar electrodes in 0.1-ms pulses at an intensity of 300 µA and frequencies of 4–120 Hz. Glutamate was measured in 10-min perfusate samples by HPLC coupled with fluorescence detection following precolumn derivatization with o -phthaldialdehyde/β-mercaptoethanol. The stimulation-induced glutamate release was frequency dependent and was blocked by the infusion of the sodium channel blocker tetrodotoxin (10 µ M ) through the dialysis probe. The stimulation also induced bilateral Fos-like immunoreactivity in ventral tegmental neurons, with a significantly greater number of Fos-positive cells on the stimulated side. These findings add to a growing body of evidence suggesting that the medial prefrontal cortex regulates dopamine release in the nucleus accumbens via its projection to dopamine cell bodies in the VTA.  相似文献   

16.
The modulation of cortical dopaminergic and serotonergic neurotransmissions by neurotensin (NT) was studied by measuring the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) from the prefrontal cortex (PFC) of freely moving rats. The samples were collected via transversal microdialysis. Dopamine and 5-HT levels in the dialysate were measured using high-performance liquid chromatography (HPLC) with an electrochemical detector. Local administration of neurotensin (1microM or 0.1microM) in the PFC via the dialysis probe produced significant, long-lasting, and concentration-dependent increase in the extracellular release of DA and 5-HT. The increase produced by 1microM neurotensin reached a maximum of about 210% for DA and 340% for 5-HT. A high-affinity selective neurotensin receptor (NTR1) antagonist {2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3yl)carbonylamino tricyclo (3.3.1.1.(3.7)) decan-2-carboxylic acid} (SR 48692), perfused locally at a concentration of 0.1microM and 0.5microM in the PFC antagonized the effects of 1microM neurotensin. Our in vivo neurochemical results indicate, for the first time, that neurotensin is able to regulate cortical dopaminergic and serotonergic neuronal activity in freely moving rats. These effects are possibly mediated by interactions of neurotensin with neurons releasing DA or 5-HT, projecting to the PFC from the ventrotegmental area (VTA) and from the dorsal raphe nuclei (DRN), respectively. The potentiating effects of neurotensin on DA and 5-HT release in the PFC are regulated by NTR1 receptors, probably located on dopaminergic and serotonergic nerve terminals or axons.  相似文献   

17.
Our previous studies have suggested that dopamine and noradrenaline may be coreleased from noradrenergic nerve terminals in the cerebral cortex. To further clarify this issue, the effect of electrical stimulation of the locus coeruleus on extracellular noradrenaline, dopamine and DOPAC in the medial prefrontal cortex, parietal cortex and caudate nucleus was analysed by microdialysis in freely moving rats. Stimulation of the locus coeruleus for 20 min with evenly spaced pulses at 1 Hz failed to modify cortical catecholamines and DOPAC levels. Stimulation with bursts of pulses at 12 and 24 Hz increased, in a frequency-related manner, not only noradrenaline but also dopamine and DOPAC in the two cortices. In both cortices noradrenaline returned to baseline within 20 min of stimulation, irrespective of the stimulation frequency, whereas dopamine returned to normal within 20 and 60 min in the medial prefrontal cortex and within 60 and 80 min in the parietal cortex after 12 and 24 Hz stimulation, respectively. DOPAC remained elevated throughout the experimental period. Phasic stimulation of the locus coeruleus at 12 Hz increased noradrenaline in the caudate nucleus as in the cerebral cortices but was totally ineffective on dopamine and DOPAC. Tetrodotoxin perfusion into the medial prefrontal cortex dramatically reduced noradrenaline and dopamine levels and suppressed the effect of electrical stimulation. These results indicate that electrical stimulation-induced increase of dopamine is a nerve impulse exocytotic process and suggest that cortical dopamine and noradrenaline may be coreleased from noradrenergic terminals.  相似文献   

18.
In vivo microdialysis in conscious rats was used to examine the effect of clozapine on serotonin (5-hydroxytryptamine, 5-HT) efflux in the prefrontal cortex and dorsal raphe nucleus and dopamine efflux in the prefrontal cortex. Both systemic and local administration of clozapine (systemic, 10 or 20 mg/kg, i.p.; local, 100 microM) increased 5-HT efflux in the dorsal raphe. However, in the prefrontal cortex, dialysate 5-HT increased when clozapine (100 microM) was administered through the probe, while no effect was observed when it was administered systemically. By pretreatment with the selective 5-HT1A receptor antagonist p-MPPI (3 mg/kg, i.p.), systemic treatment of clozapine (10 mg/kg, i.p.) significantly increased 5-HT efflux in the prefrontal cortex. This result suggests that the ability of clozapine to enhance the extracellular concentrations of 5-HT in the dorsal raphe attenuates this drug's effect in the frontal cortex, probably through the stimulation of 5-HT1A somatodendritic autoreceptors in the dorsal raphe. We also found that pretreatment with p-MPPI (3 mg/kg, i.p.) attenuated by 45% the rise in cortical dopamine levels induced by clozapine (10 mg/kg, i.p.). These findings imply that the reduction in serotonergic input from the dorsal raphe nucleus induced by clozapine could lead to an increase in dopamine release in the prefrontal cortex.  相似文献   

19.
Abstract: The effect of various classes of excitatory amino acid agonists on the release of dopamine in the medial prefrontal cortex (PFC) of awake rats was examined using intracerebral microdialysis. Local infusion of 20 µ M α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), through the microdialysis probe, produced a significant increase of more than twofold in extracellular levels of dopamine. Application of 100 µ M AMPA increased these levels nearly 15 fold. The AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (50 µ M ) blocked the increase in dopamine release produced by 20 µ M AMPA. Local infusion of kainate at concentrations of 5 and 20 µ M increased dopamine release by nearly 150 and 500%, respectively. Local application of CNQX (50 µ M ) before 20 µ M kainate significantly attenuated the stimulatory effect of kainate on dopamine levels. In contrast to AMPA and kainate, infusion of N -methyl- d -aspartate (NMDA) at 20 or 100 µ M did not increase dopamine release. In fact, a trend toward a decrease in dopamine release was evident after 100 µ M NMDA. The present study indicates that the in vivo release of dopamine in the PFC is facilitated by AMPA and kainate receptors. This modulation is more profound than that previously reported in the basal ganglia. The lack of an excitatory effect of NMDA is in agreement with recent reports that the NMDA receptor may inhibit indirectly dopaminergic neurotransmission in the PFC.  相似文献   

20.
Dopaminergic innervation of the amygdala is highly responsive to stress   总被引:6,自引:0,他引:6  
The amygdala has been implicated in the neuronal sequelae of stress, although little is known about the neurochemical mechanisms underlying amygdala transmission. In vivo microdialysis was employed to measure extracellular levels of dopamine in the basolateral nucleus of the amygdala in awake rats. Once it was established that impulse-dependent release of dopamine could be measured reliably in the amygdala, the effect of stress, induced by mild handling, on amygdala dopamine release was compared with that in three other dopamine-innervated regions, the medial prefrontal cortex, nucleus accumbens, and caudate nucleus. The magnitude of increase in dopamine in response to the handling stimulus was significantly greater in the amygdala than in the nucleus accumbens and prefrontal cortex. This increase was maximal during the application of stress and diminished after the cessation of stress. In contrast, the increases in extracellular dopamine levels in other regions, in particular the nucleus accumbens, were prolonged, reaching maximal values after the cessation of stress. These results suggest that dopaminergic innervation of the amygdala may be more responsive to stress than that of other dopamine-innervated regions of the limbic system, including the prefrontal cortex, and implicate amygdalar dopamine in normal and pathophysiological processes subserving an organism's response to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号