共查询到20条相似文献,搜索用时 0 毫秒
1.
B A Siegfried N V Reo C S Ewy R A Shalwitz J J Ackerman J M McDonald 《The Journal of biological chemistry》1985,260(30):16137-16142
Effects of peripheral venous injection of glucagon and insulin on [1-13C]glucose incorporation into hepatic glycogen of rats were studied by 13C NMR in vivo. Each animal was given a continuous somatostatin infusion and a 100-mg intravenous injection of [1-13C] glucose in NMR experiments or unlabeled glucose in parallel experiments for determination of serum glucose. Insulin administration caused serum glucose to fall below basal levels and accelerated the loss of hepatic [1-13C]glucose; these effects were counteracted by the addition of glucagon. Glucagon administration alone did not affect serum glucose or hepatic [1-13C] glucose but caused the loss of [1-13C]glucose from glycogen and inhibited [1-13C]glucose incorporation into glycogen. Insulin did not alter [1-13C]glucose incorporation into glycogen when given alone or in combination with glucagon. The data are consistent with a model in which liver glycogen synthesis increases linearly with hepatic glucose concentration above a threshold glucose concentration. Insulin did not alter the rate constant or the threshold for synthesis. 相似文献
2.
While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, Tmax, by 58% compared with the sham-treated animals. The localized 13C NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia. 相似文献
3.
4.
Gliotoxins are a group of amino acids that are toxic to astrocytes, and are substrates of high-affinity sodium-dependent glutamate transporters. In the present study, C6 glioma cells were preincubated for 20 h in the presence of 400 μM L--aminoadipate, L-serine-O-sulphate, D-aspartate or L-cysteate, as well as in the presence of the poorly transported L-glutamate uptake inhibitor, L-anti-endo-methanopyrrolidine dicarboxylate. In experiments following [3-13C]alanine metabolism, all toxins caused a decreased incorporation of label into glutamate. Production of labelled lactate changed only when cells were incubated in the presence of L--aminoadipate or L-serine-O-sulphate. Incubation with L-anti-endo-methanopyrrolidine dicarboxylate caused no change in the amount of label incorporated into either glutamate or lactate. When glutathione production was followed using 1 mM [2-13C]glycine, differential effects of the gliotoxins were revealed. Most notably, both L-serine-O-sulphate and L--aminoadipate caused significant increases in labelling of glutathione. Once again, L-anti-endo-methanopyrrolidine dicarboxylate was without effect. Overall, we have shown that the gliotoxins cause disruption to alanine metabolism and glutathione production in C6 glioma cells, but that there are notable differences in their mechanisms of action. In the absence of any disruption to metabolism by L-anti-endo-methanopyrrolidine dicarboxylate, it is concluded that their mode of action involves more than inhibition of glutamate transport. 相似文献
5.
The field dependence of relaxation times of the C-1 carbon of glycogen was studied in vitro by natural-abundance 13C NMR. T1 is strongly field dependent, while T2 does not change significantly with magnetic field. T1 and T2 were also measured for rat hepatic glycogen enriched with [1-13C]glucose in vivo at 4.7 T, and similar relaxation times were observed as those obtained in vitro at the same field. The in vitro values of T1 were 65 +/- 5 ms at 2.1 T, 142 +/- 10 ms at 4.7 T, and 300 +/- 10 ms at 8.4 T, while T2 values were 6.7 +/- 1 ms at 2.1 T, 9.4 +/- 1 ms at 4.7 T, and 9.5 +/- 1 ms at 8.4 T. Calculations based on the rigid-rotor nearest-neighbor model give qualitatively good agreement with the T1 field dependence with a best-fit correlation time of 6.4 X 10(-9) s, which is significantly smaller than tau M, the estimated overall correlation time for the glycogen molecule (ca. 10(-5) s). A more accurate fit of T1 data using a modified Lipari and Szabo approach indicates that internal fast motions dominate the T1 relaxation in glycogen. On the other hand, the T2 relaxation is dominated by the overall correlation time tau M while the internal motions are almost but not completely unrestricted. 相似文献
6.
Studies on glycogen synthesis in pigeon liver homogenates. Glycogen synthesis from glucose monophosphates and uridine diphosphate glucose 总被引:2,自引:2,他引:0
V. N. Nigam 《The Biochemical journal》1967,105(2):515-519
Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate. 相似文献
7.
13C NMR studies of glycogen turnover in the perfused rat liver 总被引:5,自引:0,他引:5
G I Shulman D L Rothman Y Chung L Rossetti W A Petit E J Barrett R G Shulman 《The Journal of biological chemistry》1988,263(11):5027-5029
To assess whether hepatic glycogen is actively turning over under conditions which promote net glycogen synthesis we perfused livers from 24-h fasted rats with 20 mM D-[1-13C]glucose, 10 mM L-[3-13C]alanine, 10 mM L-[3-13C]lactate, and 1 microM insulin for 90 min followed by a 75-min "chase" period with perfusate of the same composition containing either 13C-enriched or unlabeled substrates. The peak height of the C-1 resonance of the glucosyl subunits in glycogen was monitored, in real time, using 13C NMR techniques. During the initial 90 min the peak height of the C-1 resonance of glycogen increased at almost a constant rate reflecting a near linear increase in net glycogen synthesis, which persisted for a further 75 min if 13C-enriched substrates were present during the "chase" period. However, when the perfusate was switched to the unenriched substrates, the peak height of the C-1 resonance of glycogen declined in a nearly linear manner reflecting active glycogenolysis during a time of net glycogen synthesis. By comparing the slopes of the curve describing the time course of the net [1-13C] glucose incorporation into glycogen with the rate of net loss of 13C label from the C-1 resonance of glycogen during the "chase" period we estimated the relative rate of glycogen breakdown to be 60% of the net glycogen synthetic rate. Whether this same phenomenon occurs to such an appreciable extent in vivo remains to be determined. 相似文献
8.
P Jehenson P Canioni P Hantraye A Syrota 《Biochemical and biophysical research communications》1992,182(2):900-905
In vivo glycogen metabolism was investigated at 2 Tesla by 13C NMR in the baboon liver. Two concentric surface coils were used for 13C observation and proton decoupling, respectively. Spectra were acquired in 2 to 10 minutes with a 60 ms repetition time. After 3 hours of glucose infusion in the 48 hr fasted animal, 3 g of 99%-enriched [1-13C]glucose were injected. The distribution of the label on C-1 and also C-2, C-5 and C-6 of glycogen indicated 65% and 35% contributions of the direct and indirect pathways to glycogen synthesis from glucose, respectively. The results show that hepatic metabolic pathways and rates can be followed in vivo in large animals by 13C NMR at 2 Tesla. 相似文献
9.
Flux control in the rat gastrocnemius glycogen synthesis pathway by in vivo 13C/31P NMR spectroscopy
Chase JR Rothman DL Shulman RG 《American journal of physiology. Endocrinology and metabolism》2001,280(4):E598-E607
To determine the relative contributions of glucose transport/hexokinase, glycogen synthase (GSase), and glycolysis to the control of insulin-stimulated muscle glycogen synthesis, we combined 13C and 31P NMR to quantitate the glycogen synthesis rate and glucose 6-phosphate (G-6-P) levels in rat (Sprague-Dawley) gastrocnemius muscle during hyperinsulinemia at euglycemic (E) and hyperglycemic (H) glucose concentrations under thiopental anesthesia. Flux control was calculated using metabolic control analysis. The combined control coefficient of glucose transport/hexokinase (GT/Hk) for glycogen synthesis was 1.1 +/- 0.03 (direct measure) and 1.14-1.16 (calculated for a range of glycolytic fluxes), whereas the control coefficient for GSase was much lower (0.011-0.448). We also observed that the increase in in vivo [G-6-P] from E to H (0.22 +/- 0.03 to 0.40 +/- 0.03 mM) effects a supralinear increase in the in vitro velocity of GSase, from 14.6 to 26.1 mU. kg(-1). min(-1) (1.8-fold). All measurements suggest that the majority of the flux control of muscle glycogen synthesis is at the GT/Hk step. 相似文献
10.
An NMR study of alterations in [1-13C]glucose metabolism in C6 glioma cells by gliotoxic amino acids
A series of glutamate analogues, known as gliotoxins, are toxic to astrocytes in culture, and are inhibitors or substrates of high affinity sodium-dependent glutamate transporters. The mechanisms by which these gliotoxins cause toxicity are not fully understood. The effects of a series of gliotoxic amino acids (L-alpha-aminoadipate, L-serine-O-sulphate, D-aspartate and L-cysteate) on metabolism of [1-13C]glucose were examined in C6 glioma cells using 13C nuclear magnetic resonance (NMR) spectroscopy. The cells were preincubated in the presence of sub toxic concentrations of each gliotoxin (400 micromol/l) for 20 h. This was followed by incubation (4 h) with [1-13C]glucose (5.5 mmol/l) in the presence and absence of each gliotoxin. The incorporation of 13C label into the observed metabolites was analysed. Following preincubation with L-alpha-aminoadipate, D-aspartate, and L-serine-O-sulphate there was a significant decrease in the incorporation of 13C label into glutamate, alanine and lactate from [1-13C]glucose. In the presence of L-cysteate production of labelled glutamate was decreased, while there was no significant effect on the concentrations of labelled lactate and alanine. There was no change in the quantity of LDH released into the medium after incubation of the cells with any of the gliotoxins. Overall these results indicate that the presence of gliotoxins profoundly alters the flux of glucose to lactate, alanine, aspartate and glutamate. 相似文献
11.
Conjard A Dugelay S Chauvin MF Durozard D Baverel G Martin G 《The Journal of biological chemistry》2002,277(33):29444-29454
Although acetate, the main circulating volatile fatty acid in humans and animals, is metabolized at high rates by the renal tissue, little is known about the precise fate of its carbons and about the regulation of its renal metabolism. Therefore, we studied the metabolism of variously labeled [(13)C]acetate and [(14)C]acetate molecules and its regulation by alanine, which is also readily metabolized by the kidney, in isolated rabbit renal proximal tubules. With acetate as the sole substrate, 72% of the C-1 and 49% of the C-2 of acetate were released as CO(2); with acetate plus alanine, the corresponding values were decreased to 49 and 25%. The only other important products formed from the acetate carbons were glutamine, and to a smaller extent, glutamate. By combining (13)C NMR and radioactive and enzymatic measurements with a novel model of acetate metabolism, fluxes through the enzymes involved were calculated. Thanks to its anaplerotic effect, alanine caused a stimulation of acetate removal and a large increase in fluxes through pyruvate carboxylase, citrate synthase, and the enzymes involved in glutamate and glutamine synthesis but not in flux through alpha-ketoglutarate dehydrogenase. We conclude that the anaplerotic substrate alanine not only accelerates the disposal of acetate but also prevents the wasting of the latter compound as CO(2). 相似文献
12.
M R Soma M P Mims M V Chari D Rees J D Morrisett 《The Journal of biological chemistry》1992,267(16):11168-11175
13C nuclear magnetic resonance spectroscopy has been used to study triglyceride metabolism in 3T3-L1 cells incubated with [1-13/14C] acetate, myristate, palmitate, stearate, or oleate. Labeled cells embedded in agarose filaments were perfused in a specially fitted NMR tube within the spectrometer magnet. Incubation of 3T3-L1 cells with a specific fatty acid enriched the cellular triglycerides with that fatty acid; the NMR signal observed in the carbonyl region of the cell spectrum was due in large part to that fatty acid. NMR data demonstrated that cellular enzymes preferentially esterified saturated fatty acids at the glyceride sn-1,3 position and unsaturated fatty acids at the sn-2 position. cellular triglyceride hydrolysis by hormone-sensitive lipase was monitored by measuring the decrease in the integrated intensities of resonances arising from fatty acyl carbonyls esterified at glycerol carbons sn-1,3 and sn-2. Under basal conditions, the time courses were first-order, and the average rates were 0.14% of signal/min at both carbonyl positions. Under isoproterenol stimulated conditions, these rates were still first-order and increased 6.4-fold at the sn-1,3 position and 2.4-fold at the sn-2 position. The observation that the hydrolysis time courses were first-order suggested that only a small amount of cellular triglyceride was available to hormone-sensitive lipase, supporting the view that lipolytic enzymes operate at lipid surfaces where only small amounts of neutral lipid may be soluble. Attempts to correlate the measured rates with the rates of hydrolysis at the sn-1,3 and sn-2 positions were hindered by the fact that the chemical shifts of the carbonyl carbons of the diglyceride hydrolysis product did not overlie those of the triglyceride. Analysis of hydrolysis kinetics revealed that hormone-sensitive lipase exhibited little preference for a particular esterified fatty acid under basal conditions; however, under stimulated conditions, the enzyme exhibited a preference for certain triglyceride species. 相似文献
13.
Effect of glucose on carbohydrate synthesis from alanine or lactate in hepatocytes from starved rats. 下载免费PDF全文
Euglena gracilis was found to contain a peroxidase that specifically require L-ascorbic acid as the natural electron donor in the cytosol. The presence of an oxidation-reduction system metabolizing L-ascorbic acid was demonstrated in Euglena cells. Oxidation of L-ascorbic acid by the peroxidase, and the absence of ascorbic acid oxidase activity, suggests that the system functions to remove H2O2 in E. gracilis, which lacks catalase. 相似文献
14.
Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with [U-13C]glucose in rats 总被引:1,自引:0,他引:1
Starved rats were infused intragastrically via indwelling duodenal cannulae with glucose at a rate of 30 mg/min/kg. The infusate contained [U-13C]glucose at an enrichment of 32 or 17%. At the end of the infusion, after 160 min, glucose and lactate were isolated from arterial and portal blood and from liver, and liver glycogen was isolated and hydrolyzed to glucose. The enrichment in glucose and lactate and the isotopomer distribution in glucose of masses from 180 to 186 were determined by gas chromatography-mass spectrometry (GC-MS). From analysis of these data we determined (a) gluconeogenesis proceeds at half the basal rate in the presence of a large infused glucose load, (b) one-quarter of the hepatic pyruvate pool is derived from nonglucose carbon, (c) half of the labeled molecules in liver glycogen are of mass 186 from the infused glucose and half are of masses 181-183, (d) the contribution of the indirect path from pyruvate when corrected for synthesis from unlabeled pyruvate ranges from 55 to 65%, (e) the rate of pyruvate carboxylase averages 90% that of citrate synthase, and (f) the rate of exchange of oxaloacetate with fumarate is about three times the rate of flux in the Krebs cycle (four times in the "forward" direction), and the enrichment in carbon 1 of oxaloacetate was 2.3 times that in carbon 4. In the Appendix a method to obtain the isotopomer distribution of newly formed glucose and glycogen glucose is described. An algorithm to correct for the contribution of natural abundance of 13C and the presence of 12C in commercial [U-13C]glucose is presented. A novel mathematical analysis to obtain the parameters of the Krebs cycle from the isotopomer distribution is developed in the Appendix. Equations to calculate the relative rates of pyruvate carboxylase (y), and the equilibration of oxaloacetate with fumarate from the isotopomer distribution are derived. Mass isotopomer analysis provides a novel and powerful tool for the study of carbohydrate metabolism and the operation of the Krebs cycle. 相似文献
15.
A Sofranková 《Physiologia Bohemoslovaca》1975,24(6):509-514
The amount of glycogen and its synthesis from glucose was studied in white muscle (extensor digitorum longus -- EDL) and red muscle (soleus -- SOL) of normal rats and rats with alloxan diabetes by the anthrone method. The amount of glycogen was higher in the white muscle of normal rats, both after a 24 hours' fast (0.37+/-0.02 mg/g as against 0.29+/-0.01 mg/g in the SOL) and with feeding ad libitium (0.72+/-0.05 mg/g as against 0.58+/-0.03 mg/g in the SOL). After a 24 hours' fast, the glycogen content of both muscles was non-significantly higher in alloxan-diabetic rats than in normal animals, whereas in diabetic animals fed ad libitum it was significantly lower than in normal rats fed in the same manner (0.54+/-0.07 mg/g in the EDL and 0.33+/-0.03 mg/g in the SOL). The difference between the glycogen content of the white and red muscle of diabetic rats was also in favour of the white muscle. Muscle glycogenesis from intragastrically administered glucose was higher in the red muscle in all the experimental groups. In normal fed ad libitum the glycogen content of the EDL did not change after glucose administration, but in the SOL it rose from 0.58+/-0.03 to 0.83+/-0.05 mg/g. In fasting (24 hours) normal rats it rose sharply in both muscles, from 0.037+/-0.02 to 0.57+/-0.03 mg/g in the EDL and from 0.29+/-0.01 to 0.87+/-0.06 mg/g in the SOL. In fasting (24 hours) diabetic animals, the glycogen content rose after glucose in the SOL only, from 0.36+/-0.01 to 0.66+/-0.06 mg/g. The differences found in glycogen synthesis in the white and red muscle of normal and diabetic rats are discussed mainly from the aspect of the existence of a relationship between the glycogen concentration and glycogen synthetase activity. 相似文献
16.
D-(1,5,6-13C3)Glucose (7) has been synthesized by a six-step chemical method. D-(1,2-13C2)Mannose (1) was converted to methyl D-(1,2-13C2)mannopyranosides (2), and 2 was oxidized with Pt-C and O2 to give methyl D-(1,2-13C2)mannopyranuronides (3). After purification by anion-exchange chromatography, 3 was hydrolyzed to give D-(1,2-13C2)mannuronic acid (4), and 4 was converted to D-(5,6-13C2)mannonic acid (5) with NaBH4. Ruff degradation of 5 gave D-(4,5-13C2)arabinose (6), and 6 was converted to D-(1,5,6-13C3)glucose (7) and D-(1,5,6-13C3)mannose (8) by cyanohydrin reduction. D-(2,5,6-13C3)Glucose (9) was prepared from 8 by molybdate-catalyzed epimerization. 相似文献
17.
Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. 总被引:6,自引:0,他引:6
J W Ryder Y Kawano D Galuska R Fahlman H Wallberg-Henriksson M J Charron J R Zierath 《FASEB journal》1999,13(15):2246-2256
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. 相似文献
18.
Saccharomyces cerevisiae has both cytoplasmic and mitochondrial C1-tetrahydrofolate (THF) synthases. These trifunctional isozymes are central to single-carbon metabolism and are responsible for interconversion of the THF derivatives in the respective compartments. In the present work, we have used 13C NMR to study folate-mediated single-carbon metabolism in these two compartments, using glycine and serine synthesis as metabolic endpoints. The availability of yeast strains carrying deletions of cytoplasmic and/or mitochondrial C1-THF synthase allows a dissection of the role each compartment plays in this metabolism. When yeast are incubated with [13C]formate, 13C NMR spectra establish that production of [3-13C]serine is dependent on C1-THF synthase and occurs primarily in the cytosol. However, in a strain lacking cytoplasmic C1-THF synthase but possessing the mitochondrial isozyme, [13C]formate can be metabolized to [2-13C]glycine and [3-13C]serine. This provides in vivo evidence for the mitochondrial assimilation of formate, activation and conversion to [13C]CH2-THF via mitochondrial C1-THF synthase, and subsequent glycine synthesis via reversal of the glycine cleavage system. Additional supporting evidence of reversibility of GCV in vivo is the production of [2-13C]glycine and [2,3-13C]serine in yeast strains grown with [3-13C]serine. This metabolism is independent of C1-THF synthase since these products were observed in strains lacking both the cytoplasmic and mitochondrial isozymes. These results suggest that when formate is the one-carbon donor, assimilation is primarily cytoplasmic, whereas when serine serves as one-carbon donor, considerable metabolism occurs via mitochondrial pathways. 相似文献
19.
13C NMR study of pine needle decomposition 总被引:1,自引:0,他引:1
The quality of substrates in plantation forest litter, and their chemistry, can influence decomposition and N cycling. We studied the decomposition of Pinus radiata D. Don needles suspended on branches in windrows, for 3 yr after clear-cutting, using improved solid-state 13C NMR and chemical analysis. The NMR spectra suggested that the concentration of condensed tannins was 12–22%, and showed they were chemically altered during the period 4–12 months after clear-cutting. The spectra showed no evidence for further chemical modification of the tannins during the second or third years. Data for P. radiata needle decomposition in New Zealand indicated rapid loss of mass in the first 3 months, and condensed tannins did not appear to prevent mineralization of C or N. The tannin and lignin concentrations increased with decomposition of the needles, which was consistent with the early mineralization of readily available C compounds. 相似文献
20.
Brain glycogen metabolism was recently observed in vivo and found to be very slow in the lightly alpha-chloralose anesthetized rat [J. Neurochem. 73 (1999) 1300]. Based on that slow turnover, the total glycogen content in the awake rat brain and its turnover time were assessed after administering 13C-labeled glucose for 48 h. Label incorporation into glycogen, glucose, amino acid, and N-acetyl-aspartate (NAA) resonances was observed. The amount of 13C label incorporated into glycogen was variable and did not correlate with that in glutamate (r=-0.1, P>0.86). However, the amount of 13C label incorporated into glycogen was very similar to that in NAA (r=0.93), implying similar turnover times between brain glycogen and NAA (approximately 10 h). Absolute quantification of the total concentration of brain glycogen in the awake, normoglycemic rat yielded 3.3+/-0.8 micromol/g (n=6, mean+/-S.D.). 相似文献