首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
Experiments were conducted in controlled growth chambers to evaluate how increases in CO2 concentration ([CO2]) affected carbon metabolism and partitioning into sorbitol, sucrose, and starch in various ages of apple leaves. Apple plants (Malus domestica), 1 year old, were exposed to [CO2] of 200, 360, 700, 1000, and 1600 μl l−1 up to 8 days. Six groups of leaves (counted from the shoot apex): leaves 1–5 (sink), 6–7 (sink to source transition), 8–9 (sink to source transition), 10–11 (nearly-matured source), 21–22 (mid-age source), and 30–32 (aged source), were sampled at 1, 2, 4, and 8 days after [CO2] treatments for carbohydrate analysis. Increases in [CO2] from a sub-ambient (200 μl l−1) to an ambient level (360 μl l−1) significantly increased the concentrations of sorbitol, sucrose, glucose, and fructose tested in all ages of leaves. Continuous increase in [CO2] from ambient to super-ambient levels up to 1600 μl l−1 also increased sorbitol concentration by ≈50% in source leaves, but not in sink and sink to source transition leaves. Increases in [CO2] from 360 to 1600 μl l−1, however, had little effect on sucrose content in all ages of leaves. Starch concentrations increased in all ages of leaves as [CO2] increased. Rapid starch increases (e.g. 5-, 6-, 20-, and 50-fold increases for leaf groups 1–5, 6–7, 10–11, and 21–22, respectively) occurred from 700 to 1600 μl l−1 [CO2] during which increases in sorbitol concentration either ceased or slowed down. Our results indicate that changes in carbohydrates were much more responsive to CO2 enrichment in source leaves than in sink and sink to source transition leaves. Carbon partitioning was favored into starch and sorbitol over sucrose in all ages of leaves when [CO2] was increased from 200 to 700 μl l−1, and was favored into starch over sorbitol from 700 to 1600 μl l−1 [CO2].  相似文献   

2.
Acclimation of plant photosynthesis to light irradiance (photoacclimation) involves adjustments in levels of pigments and proteins and larger scale changes in leaf morphology. To investigate the impact of rising atmospheric CO2 on crop physiology, we hypothesize that elevated CO2 interacts with photoacclimation in rice (Oryza sativa). Rice was grown under high light (HL: 700 µmol m?2 s?1), low light (LL: 200 µmol m?2 s?1), ambient CO2 (400 µl l?1) and elevated CO2 (1000 µl l?1). Leaf six was measured throughout. Obscuring meristem tissue during development did not alter leaf thickness indicating that mature leaves are responsible for sensing light during photoacclimation. Elevated CO2 raised growth chamber photosynthesis and increased tiller formation at both light levels, while it increased leaf length under LL but not under HL. Elevated CO2 always resulted in increased leaf growth rate and tiller production. Changes in leaf thickness, leaf area, Rubisco content, stem and leaf starch, sucrose and fructose content were all dominated by irradiance and unaffected by CO2. However, stomata responded differently; they were significantly smaller in LL grown plants compared to HL but this effect was significantly suppressed under elevated CO2. Stomatal density was lower under LL, but this required elevated CO2 and the magnitude was adaxial or abaxial surface‐dependent. We conclude that photoacclimation in rice involves a systemic signal. Furthermore, extra carbohydrate produced under elevated CO2 is utilized in enhancing leaf and tiller growth and does not enhance or inhibit any feature of photoacclimation with the exception of stomatal morphology.  相似文献   

3.
The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by 14CO2 assimilation) in isolated cells. In three of the four varieties tested, nodulated plants had lower leaf starch levels and higher activities of sucrose phosphate synthetase (SPS), and isolated mesophyll cells incorporated more carbon (percentage of total 14CO2 fixed) into sucrose and less into starch as compared to nonnodulated (nitrate-dependent) plants. The variation among cultivars and nitrogen treatments observed in the activity of SPS in leaf extracts was positively correlated with labeling of sucrose in isolated cells (r = 0.81) and negatively correlated with whole leaf starch content (r = −0.66). The results suggested that increased demand for assimilates by nodulated roots may be accommodated by greater partitioning of carbon into sucrose in the mesophyll cells. We have also confirmed the earlier report (Chatterton, Silvius 1979 Plant Physiol 64: 749-753) that photoperiod affects partitioning of fixed carbon into starch. Within two days of transfer of nodulated soybean Ransom plants from a 14-hour to a 7-hour photoperiod, leaf starch accumulation rates doubled, and this effect was associated with increased labeling of starch and decreased labeling of sucrose in isolated cells. Concurrently, activities of SPS, sucrose synthase, and uridine diphosphatase in leaves were decreased.  相似文献   

4.
To determine whether globally increasing atmospheric carbon dioxide (CO2) concentrations can affect carbon partitioning between nonstructural and structural carbon pools in agroforestry plantations, Populus nigra was grown in ambient air (about 370 μmol mol?1 CO2) and in air with elevated CO2 concentrations (about 550 μmol mol?1 CO2) using free‐air CO2 enrichment (FACE) technology. FACE was maintained for 5 years. After three growing seasons, the plantation was coppiced and one half of each experimental plot was fertilized with nitrogen. Carbon concentrations and stocks were measured in secondary sprouts in seasons of active growth and dormancy during 2 years after coppicing. Although FACE, N fertilization and season had significant tissue‐specific effects on carbon partitioning to the fractions of structural carbon, soluble sugars and starch as well as to residual soluble carbon, the overall magnitude of these shifts was small. The major effect of FACE and N fertilization was on cell wall biomass production, resulting in about 30% increased above ground stocks of both mobile and immobile carbon pools compared with fertilized trees under ambient CO2. Relative C partitioning between mobile and immobile C pools was not significantly affected by FACE or N fertilization. These data demonstrate high metabolic flexibility of P. nigra to maintain C‐homeostasis under changing environmental conditions and illustrate that nonstructural carbon compounds can be utilized more rapidly for structural growth under elevated atmospheric [CO2] in fertilized agroforestry systems. Thus, structural biomass production on abandoned agricultural land may contribute to achieving the goals of the Kyoto protocol.  相似文献   

5.
After exposure to a doubled CO2 concentration of 750 µL L?1 for 2 months, average relative growth rate (RGR) of Mokara Yellow increased 25%. The two carboxylating enzymes, ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase), responded differently to CO2 enrichment. There was a significant daytime down‐regulation in Rubisco activity in the leaves of CO2‐enriched plants. However, PEPCase activity in CO2‐enriched plants was much higher in the dark period, although it was slightly lower during the daytime than that at ambient CO2. Leaf sucrose–phosphate synthase (SPS) and sucrose synthase (SS) activities in CO2‐enriched plants increased markedly, along with a night‐time increase in total titratable acidity and malate accumulation. There was a remarkable increase in the levels of indole‐3‐acetic acid (IAA), gibberellins A1 and A3 (GA1+3), isopentenyladenosine (iPA) and zeatin riboside (ZR) in the expanding leaves of plants grown at elevated CO2. It is suggested that (1) the down‐regulation of Rubisco and up‐regulation of SPS and SS are two important acclimation processes that are beneficial because it enhanced both photosynthetic capacity at high CO2 and reduced resource investment in excessive Rubisco capacity; (2) the increased levels of plant hormones in CO2‐enriched M. Yellow might play an important role in controlling its growth and development.  相似文献   

6.
Rice (Oryza sativa L. cv. IR-30) was grown season-long in outdoor, controlled-environment chambers at 33 Pa CO2 with day/night/paddy-water temperatures of 28/21/25 °C, and at 66 Pa CO2 with five different day/night/paddy-water temperature regimes (25/18/21, 28/21/25, 31/24/28, 34/27/31 and 37/30/34 °C). Sucrose phosphate synthase (SPS) activities in leaf extracts at 21, 48 and 81 days after planting (DAP) were assayed under saturating and selective (limiting) conditions. Diel SPS activity data indicated that rice SPS was light regulated; with up to 2.2-fold higher rates during the day. Throughout the growth season, leaf SPS activities were up-regulated in the CO2-enriched plants, averaging 20 and 12% higher than in ambient-CO2 grown plants in selective and saturating assays, respectively. Similarly, SPS activities increased 2.4% for each 1 °C rise in growth temperature from 25 to 34 °C, but de creased 11.5% at 37 °C. Leaf sucrose content was higher, and mirrored SPS activity better, than starch, although starch was more responsive to CO2 treatment. Leaf sucrose and starch contents were significantly higher throughout the season in plants at elevated CO2, but the N content averaged 6.5% lower. Increasing growth temperatures from 25 to 37 °C caused a linear decrease (62%) in leaf starch content, but not in sucrose. Consequently, the starch:sucrose ratio declined with growth temperature. The data are consistent with the hypothesis that the up-regulation of leaf SPS may be an acclimation response of rice to optimize the utilization and export of organic-C with the increased rates of inorganic-C fixation in elevated CO2 or temperature growth regimes.  相似文献   

7.
8.
Recent work has suggested that the photosynthetic rate of certain C4 species can be stimulated by increasing CO2 concentration, [CO2], even under optimal water and nutrients. To determine the basis for the observed photosynthetic stimulation, we tested the hypothesis that the CO2 leak rate from the bundle sheath would be directly related to any observed stimulation in single leaf photosynthesis at double the current [CO2]. Three C4 species that differed in the reported degree of bundle sheath leakiness to CO2, Flaveria trinervia, Panicum miliaceum, and Panicum maximum, were grown for 31–48 days after sowing at a [CO2] of 350 μl l?1 (ambient) or 700 μl l?1 (elevated). Assimilation as a function of increasing [CO2] at high photosynthetic photon flux density (PPFD, 1 600 μmol m?2 s?1) indicated that leaf photosynthesis was not saturated under current ambient [CO2] for any of the three C4 species. Assimilation as a function of increasing PPFD also indicated that the response of leaf photosynthesis to elevated [CO2] was light dependent for all three C4 species. The stimulation of leaf photosynthesis at elevated [CO2] was not associated with previously published values of CO2 leak rates from the bundle sheath, changes in the ratio of activities of PEP-carboxylase to RuBP carboxylase/oxgenase, or any improvement in daytime leaf water potential for the species tested in this experiment. In spite of the simulation of leaf photosynthesis, a significant increase in growth at elevated [CO2] was only observed for one species, F. trinervia. Results from this study indicate that leaf photosynthetic rates of certain C4 species can respond directly to increased [CO2] under optimal growth conditions, but that the stimulation of whole plant growth at elevated carbon dioxide cannot be predicted solely on the response of individual leaves.  相似文献   

9.
The short-term stimulation of the net rate of carbon dioxide exchange of leaves by elevated concentrations of CO2 usually observed in C3 plants sometimes does not persist. Experiments were conducted to test whether the patterns of response to the environment during growth were consistent with the hypotheses that photosynthetic adjustment to elevated CO2 concentration is due to (1) feedback inhibition or (2) nutrient stress. Soybean [Glycine max (L.) Merr. cv. Williams] and sugar beet (Best vulgaris L. cv. Mono Hye-4) were grown from seed at 350 and 700 μl? CO2, at 20 and 25°C, at a photon flux density of 0.5 and 1.0 mmol m?2 S?1 and with three nutrient regimes until the third trifoliolate leaf of soybean or the sixth leaf of sugar beet had finished expanding. Net rates of CO2 exchange of the most recently expanded leaves were then measured at both 350 and 700 μl 1?1 CO2. Plants grown at the elevated CO2 concentration had net rates of leaf CO2 exchange which were reduced by 33% in sugar beet and 23% in soybean when measured at 350 μl 1?1 CO2 and when averaged over all treatments. Negative photosynthetic adjustment to elevated CO2 concentration was not greater at 20 than at 25°C, was not greater at a photon flux density of 1.0 than at 0.5 mmol m?2 S?1 and was not greater with limiting nutrients. Furthermore, in soybean, negative photosynthetic adjustment could be induced by a single night at elevated CO2 concentration, with net rates of CO2 exchange the next day equal to those of leaves of plants grown from seed at the elevated concentration of CO2. These patterns do not support either the feedback-inhibition or the nutrient-stress hypothesis of photosynthetic adjustment to elevated concentrations of CO2.  相似文献   

10.
Small birch plants (Betula pendula Roth.) were grown from seed for periods of up to 70d in a climate chamber at optimal nutrition and at present (350 μmol mol?1) or elevated (700 μmol mol?1) concentrations of atmospheric CO2. Nutrients were sprayed over the roots in Ingestad-type units. Relative growth rate and net assimilation rate were slightly higher at elevated CO2, whereas leaf area ratio was slightly lower. Smaller leaf area ratio was associated with lower values of specific leaf area. Leaves grown at elevated CO2 had higher starch concentrations (dry weight basis) than leaves grown at present levels of CO2. Biomass allocation showed no change with CO2, and no large effects on stem height, number of side shoots and number of leaves were found. However, the specific root length of fine roots was higher at elevated CO2. No large difference in the response of carbon assimilation to intercellular CO2 concentration (A/Ci curves) were found between CO2 treatments. When measured at the growth environments, the rates of photosynthesis were higher in plants grown at elevated CO2 than in plants grown at present CO2. Water use efficiency of single leaves was higher in the elevated treatment. This was mainly attributable to higher carbon assimilation rate at elevated CO2. The difference in water use efficiency diminished with leaf age. The small treatment difference in relative growth rate was maintained throughout the experiment, which meant that the difference in plant size became progressively greater. Thus, where plant nutrition is sufficient to maintain maximum growth, small birch plants may potentially increase in size more rapidly at elevated CO2.  相似文献   

11.
Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V max SPS activity in leaf and fiber. Lines with the highest V max SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of 14C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO2 concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.  相似文献   

12.
Increased atmospheric carbon dioxide supply is predicted to alter plant growth and biomass allocation patterns. It is not clear whether changes in biomass allocation reflect optimal partitioning or whether they are a direct effect of increased growth rates. Plasticity in growth and biomass allocation patterns was investigated at two concentrations of CO2 ([CO2]) and at limiting and nonlimiting nutrient levels for four fast‐ growing old‐field annual species. Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, and Polygonum pensylvanicum were grown from seed in controlled growth chamber conditions at current (350 μmol mol?1, ambient) and future‐ predicted (700 μmol mol?1, elevated) CO2 levels. Frequent harvests were used to determine growth and biomass allocation responses of these plants throughout vegetative development. Under nonlimiting nutrient conditions, whole plant growth was increased greatly under elevated [CO2] for three C3 species and moderately increased for a C4 species (Amaranthus). No significant increases in whole plant growth were observed under limiting nutrient conditions. Plants grown in elevated [CO2] had lower or unchanged root:shoot ratios, contrary to what would be expected by optimal partitioning theory. These differences disappeared when allometric plots of the same data were analysed, indicating that CO2‐induced differences in root:shoot allocation were a consequence of accelerated growth and development rates. Allocation to leaf area was unaffected by atmospheric [CO2] for these species. The general lack of biomass allocation responses to [CO2] availability is in stark contrast with known responses of these species to light and nutrient gradients. We conclude that biomass allocation responses to elevated atmospheric [CO2] are not consistent with optimal partitioning predictions.  相似文献   

13.
Cycads were a dominant plant functional type during the Mesozoic Era when atmospheric carbon dioxide [CO2] greatly exceeded current conditions. Cycads, now rare and endangered, are slow‐growing perennial gymnosperms that develop carbon‐rich structural biomass, such as sclerophyllous leaves, dense stems and massive reproductive cones. Is cycad carbon partitioning to specific organs a constraint of their high [CO2] evolutionary history (CO2 legacy hypothesis, CLH)? To explore changes in cycad growth, carbon partitioning and assimilation responses that could be expected during the CO2 depletion of the Cenozoic Era, individuals of the cycad species Encephalartos villosus plants were grown at four CO2 levels: 400, 550, 750 and 1000 μmol mol?1. The CLH predicts that cycad biomass and growth rates would increase in elevated [CO2] due to increased net assimilation rates, and that carbon‐dense structures would provide sufficient carbohydrate sinks to prevent photosynthetic down‐regulation even under super‐ambient [CO2] of 1000 μmol mol?1. Both hypotheses were confirmed, though the latter less strongly. Plant relative growth rates increased 23% and biomass accumulation increased 65% in 1000 μmol mol?1relative to 400 μmol mol?1 treatment groups. Mean net assimilation rates increased 130% at 1000 μmol mol?1 relative to 400 μmol mol?1 CO2, though there was some down‐regulation of maximum rate of carboxylation (Vcmax). Assimilation rates, relative growth rates, biomass and mean leaf sugar content were linearly related to [CO2] over the entire experimental range. Photosynthesis appears to be regulated by stomata at low CO2 levels and by non‐stomatal (i.e. biochemical limitations) at greater concentrations. In general, our results suggest that growth and physiological performance of cycads have been severely compromised by declining [CO2] during the Cenozoic Era, possibly contributing to the current rare and endangered status of this functional type.  相似文献   

14.
15.
The effect of long-term exposure to elevated levels of CO2 on biomass partitioning, net photosynthesis and starch metabolism was examined in cotton. Plants were grown under controlled conditions at 350, 675 and 1000 l l-1 CO2. Plants grown at 675 and 1000 l l-1 had 72% and 115% more dry weight respectively than plants grown at 350 l l-1. Increases in weight were partially due to corresponding increases in leaf starch. CO2 enrichment also caused a decrease in chlorophyll concentration and a change in the chlorophyll a/b ratio. High CO2 grown plants had lower photosynthetic capacity than 350 l l-1 grown plants when measured at each CO2 concentration. Reduced photosynthetic rates were correlated with high internal (non-stomatal) resistances and higher starch levels. It is suggested that carbohydrate accumulation causes a decline in photosynthesis by feedback inhibition and/or physical damage at the chloroplast level.Abbreviations Ci internal CO2 concentration - Chl chlorophyll - DMSO dimethylsulfoxide - HSD honestly significant difference (procedure) - MCW methanolchloroform-water - Pi inorganic phosphate - S.E.M. standard error of mean  相似文献   

16.
We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 μmol m−2 s−1) and using two CO2 concentrations, 360 and 1200 μmol mol−1. Photosynthetically active radiation (400–700 nm) was attenuated slightly faster through canopies grown in 360μmol mol−1 than through canopies grown in 1200μmol mol−1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200μmol mol−1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p≤ 0.05) than for canopies grown in 360μmol mol−1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 °C over 5d increased starch, fructan and glucose levels in canopies grown in 1200μmol mol−1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.  相似文献   

17.
We investigated the individual effect of null mutations of each of the four sucrose‐phosphate synthase (SPS) genes in Arabidopsis (SPSA1, SPSA2, SPSB and SPSC) on photosynthesis and carbon partitioning. Null mutants spsa1 and spsc led to decreases in maximum SPS activity in leaves by 80 and 13%, respectively, whereas null mutants spsa2 and spsb had no significant effect. Consistently, isoform‐specific antibodies detected only the SPSA1 and SPSC proteins in leaf extracts. Leaf photosynthesis at ambient [CO2] was not different among the genotypes but was 20% lower in spsa1 mutants when measured under saturating [CO2] levels. Carbon partitioning at ambient [CO2] was altered only in the spsa1 null mutant. Cold treatment of plants (4 °C for 96 h) increased leaf soluble sugars and starch and increased the leaf content of SPSA1 and SPSC proteins twofold to threefold, and of the four null mutants, only spsa1 reduced leaf non‐structural carbohydrate accumulation in response to cold treatment. It is concluded that SPSA1 plays a major role in photosynthetic sucrose synthesis in Arabidopsis leaves, and decreases in leaf SPS activity lead to increased starch synthesis and starch turnover and decreased Ribulose 1,5‐bisphosphate regeneration‐limited photosynthesis but not ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco)‐limited photosynthesis, indicating a limitation of triose‐phosphate utilization (TPU).  相似文献   

18.
Photosynthesis, leaf assimilate partitioning, flowering, and fruiting were examined in two lines of Lycopersicon esculentum Mill. transformed with a gene coding for sucrose-phosphate synthase (SPS) (EC 2.3.1.14) from Zea mays L. expressed from a tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit promoter. Plants were grown at either 35 or 65 Pa CO2 and high light (1000 mol photons·m–2·s–1). Limiting and maximum SPS activities were significantly greater (up to 12 times) in the leaves of SPS-transformed lines for all treatments. Partitioning of carbon into sucrose increased 50% for the SPS transformants. Intact leaves of the control lines exhibited CO2-insensitivity of photosynthesis at high CO2 levels, whereas the SPS transformants did not exhibit CO2-insensitivity. The O2-sensitivity of photosynthesis was also greater for the SPS-transformed lines compared to the untransformed control when measured at 65 Pa CO2. These data indicate that the SPS transformants had a reduced limitation on photosynthesis imposed by end-product synthesis. Growth at 65 Pa CO2 resulted in reduced photosynthetic capacity for control lines but not for SPS-transformed lines. When grown at 65 Pa CO2, SPS transformed lines had a 20% greater photosynthetic rate than controls when measured at 65 Pa CO2 and a 35% greater rate when measured at 105 Pa CO2. Photosynthetic rates were not different between lines when grown at 35 Pa CO2. The time to 50% blossoming was reduced and the total number of inflorescences was significantly greater for the SPS transformants when grown at either 35 or 65 Pa CO2. At 35 Pa CO2, the total fruit number of the SPS transformants was up to 1.5 times that of the controls, the fruit matured earlier, and there was up to a 32% increase in total fruit dry weight. Fruit yield was not significantly different between the lines when grown at 65 Pa CO2. Therefore, there was not a strict relationship between yield and leaf photosynthesis rate. Flowering and fruit development of the SPS-transformed lines grown at 35 Pa CO2 showed similar trends to the controls grown at 65 Pa CO2. Incidences of blossom-end rot were also reduced in the SPS-transformed lines. These data indicate that altering starch/sucrose partitioning by increasing the capacity for sucrose synthesis can affect acclimation to elevated CO2 partial pressure and flowering and fruiting in tomato.Abbreviations DAS days after seeding - nptII neomycin phos-photransferase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - SSU Rubisco small subunit This research was supported by U.S. Department of Energy grant FG02-87ER13785. B.J.M. thanks the Natural Sciences and Engineering Research Council of Canada for financial support. We are grateful to Toni A. Voelker (Calgene Inc.) for supplying tomato seeds and valuable advice.  相似文献   

19.
Effects of low‐temperature stress, cold acclimation and growth at high irradiance in a spring (Triticum aestivum L. cv. Katepwa) and a winter wheat (Triticum aestivum L. cv. Monopol) were examined in leaves and crowns with respect to the sucrose utilisation and carbon allocation. Light‐saturated and carbon dioxide (CO2)‐saturated rates of CO2 assimilation were decreased by 50% in cold‐stressed spring and winter wheat cultivars. Cold‐ or high light‐acclimated Katepwa spring wheat maintained light‐saturated rates of CO2 assimilation comparable to those of control spring wheat. In contrast, cold‐ or high light‐acclimated winter wheat maintained higher light and CO2‐saturated rates of CO2 assimilation than non‐acclimated controls. In leaves, during either cold stress, cold acclimation or acclimation to high irradiance, the sucrose/starch ratio increased by 5‐ to 10‐fold and neutral invertase activity increased by 2‐ to 2.5‐fold in both the spring and the winter wheat. In contrast, Monopol winter wheat, but not Katepwa spring wheat, exhibited a 3‐fold increase in leaf sucrose phosphate synthase (SPS) activity, a 4‐fold increase in sucrose:sucrose fructosyl transferase activity and a 6.6‐fold increase in acid invertase upon cold acclimation. Although leaves of cold‐stressed and high light‐grown spring and winter wheat showed 2.3‐ to 7‐fold higher sucrose levels than controls, these plants exhibited a limited capacity to adjust either sucrose phosphate synthase or sucrose synthase activity (SS[s]). In addition, the acclimation to high light resulted in a 23–31% lower starch abundance and no changes at the level of fructan accumulation in leaves of either winter or spring wheat when compared with controls. However, high light‐acclimated winter wheat exhibited a 1.8‐fold higher neutral invertase activity and high light‐acclimated spring wheat exhibited an induction of SS(d) activity when compared with controls. Crowns of Monopol showed higher fructan accumulation than Katepwa upon cold and high light acclimation. We suggest that the differential adjustment of CO2‐saturated rates of CO2 assimilation upon cold acclimation in Monopol winter wheat, as compared with Katepwa spring wheat, is associated with the increased capacity of Monopol for sucrose utilisation through the biosynthesis of fructans in the leaves and subsequent export to the crowns. In contrast, the differential adjustment of CO2‐saturated rates of CO2 assimilation upon high light acclimation of Monopol appears to be associated with both increased fructan and starch accumulation in the crowns.  相似文献   

20.
Better understanding of crop responses to projected changes in climate is an important requirement. An experiment was conducted in sunlit, controlled environment chambers known as soil–plant–atmosphere–research units to determine the interactive effects of atmospheric carbon dioxide concentration [CO2] and ultraviolet‐B (UV‐B) radiation on cotton (Gossypium hirsutum L.) growth, development and leaf photosynthetic characteristics. Six treatments were used, comprising two levels of [CO2] (360 and 720 µmol mol?1) and three levels of 0 (control), 7.7 and 15.1 kJ m?2 d?1 biologically effective UV‐B radiations within each CO2 level. Treatments were imposed for 66 d from emergence until 3 weeks after the first flower stage. Plants grown in elevated [CO2] had greater leaf area and higher leaf photosynthesis, non‐structural carbohydrates, and total biomass than plants in ambient [CO2]. Neither dry matter partitioning among plant organs nor pigment concentrations was affected by elevated [CO2]. On the other hand, high UV‐B (15.1 kJ m?2 d?1) radiation treatment altered growth resulting in shorter stem and branch lengths and smaller leaf area. Shorter plants at high UV‐B radiation were related to internode lengths rather than the number of mainstem nodes. Fruit dry matter accumulation was most sensitive to UV‐B radiation due to fruit abscission. Even under 7.7 kJ m?2 d?1 of UV‐B radiation, fruit dry weight was significantly lower than the control although total biomass and leaf photosynthesis did not differ from the control. The UV‐B radiation of 15.1 kJ m?2 d?1 reduced both total (43%) and fruit (88%) dry weights due to smaller leaf area and lower leaf net photosynthesis. Elevated [CO2] did not ameliorate the adverse effects of UV‐B radiation on cotton growth and physiology, particularly the boll retention under UV‐B stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号