首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhythm is an important dynamic behavior in biological systems. We have been studying oscillatory reactions of enzymes induced by gradual entry of substances through semipermeable membrane. Not only enzymes but also a few species of substance of living system have been elucidated to cause oscillatory reaction. Here we present the oscillatory reaction by chondroitin sulfate in a system of gradual entry of calcium ion. Introducing calcium ion through dialysis membrane into chondroitin sulfate solution induces an oscillation of free calcium ion concentration in chondroitin sulfate solution. Simultaneously, it is elucidated that oscillation of conformation occurs with permeation of calcium ion. In both measurements, oscillations with 25h period are obtained. The phases of oscillation, however, differ slightly from each other. From these results, it is suggested that autocatalysis exerts in the contraction of chondroitin sulfate conformation. These phenomena are very intriguing for elucidating oscillation in living system.  相似文献   

2.
Summary Acid phosphatase activity has been measured in cultured human gingival fibroblasts using a validated histochemical simultaneous coupling semi-permeable membrane technique. The histochemical reaction was linear over a three hour incubation period and had a pH optimum of 5.0. The activity was not increased by prior exposure to hypotonic acetate buffer and was inhibited by fluoride and molybdate but not by formaldehyde. These results indicate that the semi-permeable membrane technique described may be used for observing and measuring acid phosphatase activity in cultured fibroblasts. From results obtained using inhibitors, it appears that in these cells most of the acid phosphatase observed is lysosomal. The absence of any activation of activity following pre-incubation with hypotonic buffer indicates that the method is not suitable for monitoring lysosomal membrane function.  相似文献   

3.
The peroxidase-oxidase reaction is known to involve reactive oxygen species as intermediates. These intermediates inactivate many types of biomolecules, including peroxidase itself. Previously, we have shown that oscillatory dynamics in the peroxidase-oxidase reaction seem to protect the enzyme from inactivation. It was suggested that this is due to a lower average concentration of reactive oxygen species in the oscillatory state compared to the steady state. Here, we studied the peroxidase-oxidase reaction with either 4-hydroxybenzoic acid or melatonin as cofactors. We show that the protective effect of oscillatory dynamics is present in both cases. We also found that the enzyme degradation depends on the concentration of the cofactor and on the pH of the reaction mixture. We simulated the oscillatory behaviour, including the oscillation/steady state bistability observed experimentally, using a detailed reaction scheme. The computational results confirm the hypothesis that protection is due to lower average concentrations of superoxide radical during oscillations. They also show that the shape of the oscillations changes with increasing cofactor concentration resulting in a further decrease in the average concentration of radicals. We therefore hypothesize that the protective effect of oscillatory dynamics is a general effect in this system.  相似文献   

4.
The activity of rabbit muscle phosphofructokinase (EC 2.7.1.11) has been followed as a function of time under conditions where the enzyme is separated from the bulk solution by an inert membrane. An enzymatic coupling assay allows continuous measurement of the variations in NADH concentration, which is directly related to the enzyme catalytic activity. For given concentrations of substrates (ATP and Fru6P) in the outside reservoir and a given ratio between diffusion coefficients of both substrates, the activity of phosphofructokinase exhibits an oscillatory behavior during a period of about 5 h. The phenomenon is explained in terms of coupling between diffusion of metabolites and non-linear enzyme reaction.  相似文献   

5.
A new simple, sensitive liposome immunosensor (LIS) has been developed by combining the advantages of spin membrane immunoassay (SMIA) and enzyme immunosensor (EIS). The LIS system is composed of an oxygen electrode and sensitized liposomes. It records liposome lysis induced by specific anti-theophylline antibodies and complement which is monitored by the release of entrapped enzymes instead of spin labeles. A sensitive detection was performed because of the amplification of antigen-antibody reaction by liposome lysis and enzymatic reaction. The method offers a simple and sensitive quantitative detection of theophylline down to 4 × 10?9 M (0.7 ng/ml).  相似文献   

6.
The term 'circadian rhythm' describes an oscillatory behavior in the absence of exogenous environmental cues, with a period of about a day. As yet, we don't fully understand which biological mechanisms join together to supply a stable and self-sustained oscillation with such a long period. By chipping away at the molecular mechanism with genetic approaches, some common features are emerging. In combining molecular analyses and physiological experiments, those features that are crucial for structuring a circadian day could be uncovered.  相似文献   

7.
The oscillatory peroxidase-oxidase reaction has been investigated by using NADH deuterated in the nicotinamide 4-A position. A considerable kinetic hydrogen/deuterium isotope effect on the oscillatory behavior was revealed, which may provide an additional valuable tool for mechanistic studies and for discriminating between various mechanistic models of the peroxidase-oxidase reaction. Particularly, this effect manifests in different oscillation frequencies. A sequence of simple and aperiodic oscillations was found between two stable steady states.  相似文献   

8.
In order to develop liposomes for use in an immunoassay system, the preparation of immune liposomes and their characterization have been investigated. Liposomes have potential use in extremely sensitive analytical immunoassays, in addition to serving as an attractive drug delivery system. This liposome immunoassay system is based on membrane immunochemistry and an enzymatic reaction. An intense yellow color, easily detectable with the naked eye, was produced quite rapidly by the lysis of bovine serum albumin (BSA)-labeled, alkaline phosphatase-entrapped liposomes in the presence of anti-BSA rabbit serum and active complement under alkaline conditions. Sensitive detection is possible because of the antigen-antibody complex reaction, which leads to liposome lysis and an enzymatic reaction. The liposome immunoassay method offers a rapid, simple, and sensitive testing procedure which can quantitatively and qualitatively determine the presence or absence of antigenic materials and antibodies.  相似文献   

9.
The encapsulation of enzymes in microenvironments and especially in liposomes, has proven to greatly improve enzyme stabilization against unfolding, denaturation and dilution effects. Combining this stabilization effect, with the fact that liposomes are optically translucent, we have designed nano-sized spherical biosensors. In this work liposome-based biosensors are prepared by encapsulating the enzyme acetylcholinesterase (AChE) in L-a phosphatidylcholine liposomes resulting in spherical optical biosensors with an average diameter of 300+/-4 nm. Porins are embedded into the lipid membrane, allowing for the free substrate transport, but not that of the enzyme due to size limitations. The enzyme activity within the liposome is monitored using pyranine, a fluorescent pH indicator. The response of the liposome biosensor to the substrate acetylthiocholine chloride is relatively fast and reproducible, while the system is stable as has been shown by immobilization within sol-gel.  相似文献   

10.
 用预先制备的脂质体与含Triton X-100的胆碱脱氢酶保温随后用Bio-beadsSM-2去除去垢剂而使酶重组到脂质体,Triton X-100的浓度,磷脂-蛋白比,Mg~(2+),pH等均影响重组,脂质体的大小在重组中不是关键因素,重组酶的活力比纯化酶增加70%,重组酶对PMS的Km,相转变温度及活化能均与线粒体内膜接近而不同于纯化酶。  相似文献   

11.
Yamashita M 《The FEBS journal》2008,275(16):4022-4032
Synchronous Ca(2+) oscillation occurs in various cell types to regulate cellular functions. However, the mechanism for synchronization of Ca(2+) increases between cells remains unclear. Recently, synchronous oscillatory changes in the membrane potential of internal Ca(2+) stores were recorded using an organelle-specific voltage-sensitive dye [Yamashita et al. (2006) FEBS J273, 3585-3597], and an electrical coupling model of the synchronization of store potentials and Ca(2+) releases has been proposed [Yamashita (2006) FEBS Lett580, 4979-4983]. This model is based on capacitative coupling, by which transient voltage changes can be synchronized, but oscillatory slow potentials cannot be communicated. Another candidate mechanism is synchronization of action potentials and ensuing Ca(2+) influx through voltage-dependent Ca channels. The present study addresses the question of whether Ca(2+) increases are synchronized by action potentials, and how oscillatory store potentials are synchronized across the cells. Electrophysiological and Ca(2+)-sensitive fluorescence measurements in early embryonic chick retina showed that synchronous Ca(2+) oscillation was caused by releases of Ca(2+) from Ca(2+) stores without any evidence of action potentials in retinal neuroepithelial cells or newborn neurons. High-speed fluorescence measurement of store membrane potential surprisingly revealed that the synchronous oscillatory changes in the store potential were periodic repeats of a burst of high-frequency voltage fluctuations. The burst coincided with a Ca(2+) increase. The present study suggests that synchronization of Ca(2+) release is mediated by the high-frequency fluctuation in the store potential. Close apposition of the store membrane and plasma membrane in an epithelial structure would allow capacitative coupling across the cells.  相似文献   

12.
The cytoplasm of cultured human lymphoblasts has a particular organization. A ring formed by actin and myosin delimits a region of the cell where an active membrane veil forms. Depolymerization of the microtubular cytoskeleton releases this ring, which then oscillates between the two poles of the cell. This periodic movement has been studied and described with great precision. We have used these experimental results to model the oscillation of the ring. We have constructed a system of reaction—diffusion equations designed to simulate the behaviour of the actin and have considered three variables representing, respectively, the proteins involved in actin nucléation, F-actin bound to the plasma membrane and free F-actin, pan of which is assumed to constitute the ring, together with myosin. There are two types of results. First, from a theoretical point of view, we have succeeded in simulating a perfect back-and-forth movement of a wave. Second, this model suggests that actin alone, by virtue of its intrinsic properties, can generate an oscillatory movement within the cell, without the need for other oscillators.  相似文献   

13.
The overall rate of an enzyme catalyzed reaction is determined by the activation barrier of a rate-limiting step. If the barrier is oscillatory due to the intrinsic properties of a fluctuating enzyme, this enzymatic reaction will be influenced by a low level periodic electric field through the resonance transduction between the applied field and the oscillatory activation barrier. The ATP hydrolysis activity of a highly purified, detergent solubilized Ecto-ATPase from chicken oviduct was used to test the above concept. At 37 degrees C, this activity (1,800 mumols mg-1 min-1) was stimulated up to 47% (to 2,650 mumols mg-1 min-1) by an alternating electric field (AC), with a frequency window at 10 kHz. The maximal stimulation occurred at 5.0 V (peak-to-peak) cm-1. The potential drop across the dimension of the enzyme was approximately 10 microV (micelle diameter 20 nm). The activation barrier, or the Arrhenius activation energy, of the ATP splitting was measured to be 30 kT and the maximal barrier oscillation was calculated to be approximately 2.5 kT according to the oscillatory activation barrier (OAB) model. With the optimal AC field, full impact of the electric stimulation could be effected in much less than a second. The OAB model is many orders of magnitude more sensitive for deciphering low level periodic signals than the electroconformational coupling (ECC) model, although the latter has the ability to actively transduce energy while the former does not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Spatio-temporal dynamics of glycolysis in cell layers. A mathematical model   总被引:1,自引:0,他引:1  
Glycolytic oscillations occur in many cell types and have been intensively studied in yeast. Recent experimental and theoretical research has been focussed on the oscillatory dynamics and the synchronisation mechanism in stirred yeast cell suspensions. Here we are interested in the spatio-temporal organisation of glycolysis in cell layers. To this end we study a grid of a few thousand compartments each containing a cell. The intracellular dynamics is described by a core model of glycolysis. The compartments can exchange metabolites via diffusion. The conditions for oscillatory dynamics in a single compartment are investigated by bifurcation analysis. The spatio-temporal behaviour of the cell layer is studied by simulations. The model predicts the propagation of repetitive wave fronts induced by a substrate gradient. The formation of these waves crucially depends on the diffusive exchange of the reaction product between cells. Depending on the kinetic parameters complex spatio-temporal behaviour such as periodic termination of waves can arise. In these cases the cellular oscillation characteristics depend on the location of the cell in the array.  相似文献   

15.
The cells within the intact islet of Langerhans function as a metabolic syncytium, secreting insulin in a coordinated and oscillatory manner in response to external fuel. With increased glucose, the oscillatory amplitude is enhanced, leading to the hypothesis that cells within the islet are secreting with greater synchronization. Consequently, non-insulin-dependent diabetes mellitus (NIDDM; type 2 diabetes)-induced irregularities in insulin secretion oscillations may be attributed to decreased intercellular coordination. The purpose of the present study was to determine whether the degree of metabolic coordination within the intact islet was enhanced by increased glucose and compromised by NIDDM. Experiments were performed with isolated islets from normal and diabetic Psammomys obesus. Using confocal microscopy and the mitochondrial potentiometric dye rhodamine 123, we measured mitochondrial membrane potential oscillations in individual cells within intact islets. When mitochondrial membrane potential was averaged from all the cells in a single islet, the resultant waveform demonstrated clear sinusoidal oscillations. Cells within islets were heterogeneous in terms of cellular synchronicity (similarity in phase and period), sinusoidal regularity, and frequency of oscillation. Cells within normal islets oscillated with greater synchronicity compared with cells within diabetic islets. The range of oscillatory frequencies was unchanged by glucose or diabetes. Cells within diabetic (but not normal) islets increased oscillatory regularity in response to glucose. These data support the hypothesis that glucose enhances metabolic coupling in normal islets and that the dampening of oscillatory insulin secretion in NIDDM may result from disrupted metabolic coupling.  相似文献   

16.
Allosteric regulation, cooperativity, and biochemical oscillations   总被引:4,自引:1,他引:3  
Allosteric regulation is associated with a number of periodic phenomena in biochemical systems. The cooperative nature of such regulatory interactions provides a source of nonlinearity that favors oscillatory behavior. We assess the role of cooperativity in the onset of biochemical oscillations by analyzing two specific examples. First, we consider a model for a product-activated allosteric enzyme which has previously been proposed to account for glycolytic oscillations. While enzyme cooperativity plays an important role in the occurrence of oscillations, we show that these may nevertheless occur in the absence of cooperativity when the reaction product is removed in a Michaelian rather than linear manner. The second model considered was recently proposed to account for signal-induced oscillations of intracellular calcium. This phenomenon originates from a nonlinear process of calcium-induced calcium release. Here also, the cooperative nature of that positive feedback favors the occurrence of oscillations but is not absolutely required for periodic behavior. Besides underlining the importance of cooperativity, the results highlight the role of diffuse nonlinearities distributed over several steps within a regulated system: even in the absence of cooperativity, such mild nonlinearities (e.g., of the Michaelian type) may combine to raise the overall degree of nonlinearity up to the level required for oscillations.  相似文献   

17.
Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.  相似文献   

18.
Summary In giant fibroblastic L cells, penetration of a conventional microelectrode brought about marked decreases in the membrane potential and input resistance measured with a patch electrode under tight-seal whole-cell configuration, and repeated hyperpolarizations were often observed upon penetration. Therefore, the question arose whether such leakage artifact is a causal factor for generation of the membrane potential oscillation even in giant L cells. During whole-cell recordings, however, regular potential oscillations were observed in the cells that had not been impaled with a conventional microelectrode, as far as the Ca2+ buffer was not strong in the pipette solution. Oscillatory changes in the intracellular potential were detected by extracellular recordings with a tight-seal patch electrode in the cell-attached configuration. Thus, the potential oscillation occurs even in the absence of penetration-induced leakage or without rupture of the patch membrane. Withdrawal of a micropipette from one cell was often found to induce marked cell damage and elicit oscillatory hyperpolarizations in a neighboring cell with a certain time lag. The longer the distance between the injured and recorded cells, the greater was the time lag. Application of the cell lysate on the cell surface also gave rise to oscillatory hyperpolarizations. After repeated applications of the lysate, the membrane became unresponsive (desensitized), suggesting the involvement of receptors for the lysate factor. The lysates of different cell species (mouse lymphoma L5178Y cells or human epithelial Intestine 407 cells) produced similar effects. The effective component was heat stable and distinct from ATP. Lysate-induced hyperpolarizations were inhibited by deprivation of extracellular Ca2+ and by application of a Ca2+ channel blocker (nifedipine) or a K+ channel blocker (quinine) in the same manner as spontaneous oscillatory hyperpolarizations. It is concluded that the mouse fibroblast exhibits membrane potential oscillations, when the cell was activated, presumably via receptor systems, by some diffusible factors released from damaged cells.  相似文献   

19.
A model membrane constructed from a Millipore filter, whose pores were impregnated with dioleyl phosphate, exhibited an electric self-oscillation under nonequilibrium conditions. The membrane interposed between two solutions with the same KCl concentrations showed no temporal change in membrane potential. However, the potential became oscillatory on application of an electric current to the membrane. The frequency was proportional to the magnitude of the electric current. When both KCl solutions were replaced by NaCl solutions, a similar trend was observed, although the oscillation was not as regular as in the case of KCl. A membrane placed between equimolar solutions of KCl and NaCl, on the other hand, gave rise to an oscillation even without current application. When a membrane was placed between 5 mM KCl and 100 mM KCl, it was found that NaCl added to the 5 mM KCl side had a pronounced effect on the membrane with respect to the frequency response of the oscillation. These results indicate that the dioleyl phosphate membrane discriminates Na+ from K+.  相似文献   

20.
The present study compares two computer models of the first part of glucose catabolism in different organisms in search of evolutionarily conserved characteristics of the glycolysis cycle and proposes the main parameters that define the stable steady-state or oscillatory behavior of the glycolytic system. It is suggested that in both human pancreatic beta-cells and Saccharomyces cerevisiae there are oscillations that, despite differences in wave form and period of oscillation, share the same robustness strategy: the oscillation is not controlled by only one but by at least two parameters that will have more or less control over the pathway flux depending on the initial state of the system as well as on extra-cellular conditions. This observation leads to two important interpretations: the first is that in both S. cerevisiae and human beta-cells, despite differences in enzyme kinetics and mechanism of feedback control, evolution seems to have kept an oscillatory behavior coupled to the glucose concentration outside the cytoplasm, and the second is that the development of drugs to regulate metabolic dysfunctions in more complex systems may require further study, not only determining which enzyme is controlling the flux of the system but also under which conditions and how its control is maintained by the enzyme or transferred to other enzymes in the pathway as the drug starts acting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号