首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepadnavirus replication requires the concerted action of the polymerase and core proteins to ensure packaging of the RNA pregenome and DNA maturation. The arginine-rich C terminus of the core protein plays an essential role in both of these steps while being dispensable for nucleocapsid formation. In an attempt to identify other functional domains of the core protein, we performed a series of trans-complementation experiments analyzing the ability of duck and human hepatitis B virus (DHBV and HBV) core protein subunits to support the replication of a core-defective DHBV genome. Plasmids expressing the N-terminal amino acids 1 to 67 or the remaining C-terminal portion, amino acids 67 to 262, of the DHBV core protein were cotransfected into LMH cells along with a replication-deficient construct coding for the DHBV pregenome and polymerase. Neither the N nor the C terminus alone yielded replication-competent core particles. However, cotransfection of plasmids that separately expressed both regions restored a normal replication pattern. Furthermore, the DHBV C terminus but not the N terminus could be replaced by the corresponding domain of the HBV core protein in this assay. Finally, coexpression of the complete HBV core protein and the N terminus from DHBV resulted in DHBV replication, while the HBV core protein alone was not functional. Taken together, these findings suggest a modular organization of the DHBV core protein in which the C terminus is functionally conserved among different hepadnaviruses.  相似文献   

2.
The differentiated human hepatoma cell line Hep-G2 was transfected with cloned duck hepatitis B virus (DHBV) DNA. Introduction of closed circular DNA into the human liver cells resulted in the production of viral proteins: core antigen was detected in the cytoplasm, and e antigen, a related product, was secreted into the medium. Moreover, viral particles were released into the tissue culture medium which were indistinguishable from authentic DHBV by density, antigenicity, DNA polymerase activity, and morphology. Intravenous injection of tissue culture-derived DHBV particles into Pekin ducks established DHBV infection. In conclusion, transfection of human hepatoma cells with cloned DHBV DNA results in the production of infectious virus, as occurs with cloned human hepatitis B virus DNA. Human liver cells are therefore competent to support production of the avian and mammalian hepadnaviruses, indicating that liver-specific viral gene expression is controlled by evolutionarily conserved mechanisms. This new DHBV transfection system offers the opportunity to rapidly produce mutated DHBV which then can be further investigated in Pekin ducks.  相似文献   

3.
4.
Therapeutic small interfering RNAs (siRNAs) have attracted a lot of interest both in basic biomedical sciences as well as in translational medicine. Apart from their therapeutic efficacy adverse effects of siRNAs must be addressed. The generation of stable mRNA cleavage fragments and the translation of N-truncated proteins induced by antisense oligodeoxynucleotides (ASOs) have been reported. Similar to ASOs, siRNAs are considered to function via an antisense mechanism that promotes the cleavage of the target mRNA. To further investigate whether the stable mRNA cleavage fragments also occur in siRNA we constructed a short hairpin RNA (shRNA) expression plasmid, pshRNA794, containing the same sequence reported in experiments using ASOs which directly targeted the overlapping region of the pre-genomic mRNA (pgmRNA) and sub-genomic mRNA (sgmRNA) of duck hepatitis B virus (DHBV). The shRNA resulted in a 70.9% and 69.9% reduction of the DHBV mRNAs in LMH and HuH-7 cells, respectively. In addition a 70% inhibition of the DHBV DNA level was observed. Interestingly, 3′-mRNA cleavage fragments were detected in LMH but not in HuH-7 cells. Taken together, our findings demonstrate that the ASO sequence was also effective in siRNA. Importantly, our results provide direct evidence that stable 3′-mRNA fragments were generated by siRNA in cells with high levels of DHBV replication. Whether these can cause adverse RNAi effects needs to be explored further.  相似文献   

5.
Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.  相似文献   

6.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

7.
A duck hepatitis B virus (DHBV) genome cloned from a domestic duck from the People's Republic of China has been sequenced and exhibits no variation in sequences known to be important in viral replication or generation of gene products. Intrahepatic transfection of a dimer of this viral genome into ducklings did not result in viremia or any sign of virus infection, indicating that the genome was defective. Functional analysis of this mutant genome, performed by transfecting the DNA into a chicken hepatoma cell line capable of replicating wild-type virus, indicated that viral RNA is not encapsidated. However, virus core protein is made and can assemble into particles in the absence of encapsidation of viral nucleic acid. Using genetic approaches, it was determined that a change of cysteine to tyrosine in position 711 in the polymerase (P) gene C terminus led to this RNA-packaging defect. By site-directed mutagenesis, it was found that while substitution of Cys-711 with tryptophan also abolished packaging, substitution with methionine did not affect packaging or viral replication. Therefore, Cys-711, which is conserved in all published sequences of DHBV, may not be involved in a disulfide bridge structure essential to viral RNA packaging or replication. Our results, showing that a missense mutation in the region of the DHBV polymerase protein thought to be primarily the RNase H domain results in packaging deficiency, support the previous findings that multiple regions of the complex hepadnaviral polymerase protein may be required for viral RNA packaging.  相似文献   

8.
9.
Conditional replication of duck hepatitis B virus in hepatoma cells   总被引:2,自引:0,他引:2       下载免费PDF全文
To facilitate investigations of replication and host cell interactions in the hepadnavirus system, we have developed cell lines permitting the conditional replication of duck hepatitis B virus (DHBV). With the help of this system, we devised conditions for core particle isolation that preserve replicase activity, which was not found in previous preparations. Investigations of the stability of viral DNA intermediates indicated that both encapsidated DNA and covalently closed circular DNA (cccDNA) were turned over independently of cell division. Moreover, we showed that alpha interferon reduced the accumulation of RNA-containing viral particles. The availability of a synchronized replication system will permit the biochemical analysis of individual steps of the viral replication cycle, including the mechanism and regulation of cccDNA formation.  相似文献   

10.
11.
Integration of hepadnavirus DNAs into host chromosomes can have oncogenic consequences. Analysis of host-viral DNA junctions of DHBV identified the terminally duplicated r region of the viral genome as a hotspot for integration. Since the r region is present on the 5′ and 3′ ends of double-stranded linear (DSL) hepadnavirus DNAs, these molecules have been implicated as integration precursors. We have produced a LMH chicken hepatoma cell line (LMH 66-1 DSL) which replicates exclusively DSL duck hepatitis B virus (DHBV) DNA. To test whether linear DHBV DNAs integrate more frequently than the wild type open circular DHBV DNAs, we have characterized the integration frequency in LMH 66-1 DSL cells by using a subcloning approach. This approach revealed that 83% of the LMH 66-1 DSL subclones contained new integrations, compared to only 16% of subclones from LMH-D2 cells replicating wild-type open circular DHBV DNA. Also, a higher percentage of the LMH 66-1 DSL subclones contained two or more new integrations. Mathematical analysis suggests that the DSL DHBV DNAs integrated stably once every three generations during subcloning whereas wild-type DHBV integrated only once every four to five generations. Cloning and sequencing of new integrations confirmed the r region as a preferred integration site for linear DHBV DNA molecules. One DHBV integrant was associated with a small deletion of chromosomal DNA, and another DHBV integrant occurred in a telomeric repeat sequence.  相似文献   

12.
A mutant of human immunodeficiency virus type 1 which carries a frameshift insertion in the integrase/endonuclease region of pol gene was constructed in vitro. Upon transfection into cells, although this mutant exhibited a normal phenotype with respect to expression of gag, pol, and env genes and to generation of progeny virions, no replication-competent virus in CD4-positive cells emerged. An assay for the single-step replication of a defective viral genome dependent on trans complementation by rev protein was established and used to monitor the early phase of viral infection process. Viral clones with a mutation in the vif, vpr, or vpu gene displayed no abnormality in the early phase. In contrast, the integrase mutant did not direct a marker gene expression after infection. Together with an observation that the mutant lacked the ability to integrate, these results indicated that the integration was required for efficient viral gene expression and productive infection of human immunodeficiency virus type 1.  相似文献   

13.
Hepatitis C virus (HCV) cell culture system with JFH-1 strain and HuH-7 cells enabled us to produce infectious HCV particles in vitro, and such system is useful to explore the anti-HCV compounds and to develop the vaccine against HCV. In the present study, we describe the derivation of a cell line that permits improved production of HCV particles. Specifically, we characterized several subclones that were isolated from the original HuH-7 cell line by limiting dilution. These HuH-7 subclones displayed a notable range of HCV production levels following transfection by full-genome JFH-1 RNA. Among these subclones, HuH-7T1 produced HCV more efficiently than other subclones and Huh-7.5.1 that is known to be highly permissive for HCV replication. Upon transfection with full-genome RNA, HCV production was increased ten-fold in HuH-7T1 compared to Huh-7.5.1. This increase in viral production correlated with increased efficiency of intracellular infectious virus production. Furthermore, HCV replication did not induce cell cycle arrest in HuH-7T1, whereas it did in Huh-7.5.1. Consequently, the use of HuH-7T1 as host cells could provide increased population of HCV-positive cells and elevated viral titer. In conclusion, we isolated a HuH-7 subclone, HuH-7T1, that supports efficient HCV production. High efficiency of intracellular infectious virus production and evasion of cell cycle arrest were important for this phenotype. We expect that the use of this cell line will facilitate analysis of the underlying mechanisms for HCV particle assembly and the cell cycle arrest caused by HCV.  相似文献   

14.
A series of adenovirus type 5 precursor terminal protein (pTP) and DNA polymerase (Ad pol) genes with linker insertion mutations were separately introduced into the vaccinia virus genome under the control of a late vaccinia virus promoter. The recombinant viruses were used for overexpression of the mutant genes in HeLa cells. In total, 22 different mutant pTP and 10 different Ad pol vaccinia virus recombinants were constructed, including some that expressed carboxyl-terminus-truncated forms of both proteins and one that produced the mutant H5ts149 Ad pol. To investigate the structure-function relationships of both proteins, extracts from cells infected with the recombinant viruses were tested for in vitro complementation of the initiation and elongation steps in adenovirus DNA replication. The results were in accordance with those of earlier in vivo experiments with these insertion mutants and indicate that multiple regions of both proteins are essential for adenovirus DNA replication. The carboxyl termini of both pTP and Ad pol were shown to be essential for proper functioning of these proteins during initiation of adenovirus DNA replication. Three different DNA replication-negative pTP mutants were shown to have residual activity in the initiation assay, suggesting not only that pTP is required for initiation but also that it may play a role in DNA replication after the deoxycytidylation step.  相似文献   

15.
16.
A I Marcy  D R Yager    D M Coen 《Journal of virology》1990,64(5):2208-2216
We have derived Vero cell lines containing the herpes simplex virus DNA polymerase (pol) gene that complement temperature-sensitive pol mutants. These cell lines were used to recover viruses containing new mutations at the pol locus. Two spontaneously arising host-range mutants, 6C4 and 7E4, were isolated. These mutants did not grow efficiently on Vero cells or synthesize late polypeptides but formed plaques on a cell line containing the pol gene (DP6 cells). Whereas mutant 6C4 specified a wild-type-size Pol protein, we detected no full-length Pol protein in 7E4-infected cell extracts. Complementation studies demonstrated that 6C4 and 7E4 contain different mutations and indicated that 6C4 is in a complementation group different from that of pol temperature-sensitive mutant tsC7 or tsD9. A mutant in which 2.2 kilobases of pol sequences were replaced with the Escherichia coli lacZ gene under the control of the herpes simplex virus thymidine kinase promoter was constructed. This mutant formed blue plaques on DP6 cells in the presence of 5-bromo-4-chloro-3-indolyl-beta-D-galactoside. Using this virus in marker rescue experiments, we engineered three mutants containing deletions in the pol coding region which grew efficiently on DP6 cells but not on Vero cells and which differed in their synthesis of Pol polypeptides. The lacZ insertion virus was also used to introduce a deletion in the region upstream of the pol long open reading frame, which removes a short open reading frame that could encode a 10-amino-acid peptide. This mutant grew to similar titers on Vero and DP6 cells, indicating that these sequences are not essential for growth of the virus in tissue culture.  相似文献   

17.
A vector which expresses the herpes simplex virus type 1 (HSV-1) (strain 17) DNA polymerase gene was constructed by ligating two separately cloned HSV DNA restriction fragments into an intermediate plasmid and then mobilizing the intact polymerase gene-encoding sequence into a pSV2 derivative. The expression vector (pD7) contains a functional simian virus 40 replication origin and early enhancer-promoter upstream from the HSV DNA polymerase-encoding sequence. COS-1 cells transfected with pD7 contained an RNA species, shown by Northern blot analysis to hybridize specifically with an HSV DNA pol probe and to be the same size (4.3 kilobases) as the pol mRNA found in HSV-1-infected COS-1 cells. A genetic complementation test was used to establish that pD7 expresses a functional pol gene product. COS-1 cells transfected with pD7 were able to partially complement the growth defect of an HSV-1 (KOS) temperature-sensitive mutant, tsC7, in the DNA polymerase gene at the nonpermissive temperature.  相似文献   

18.
Experimental studies on hepatitis B virus (HBV) replication are commonly done with human hepatoma cells to reflect the natural species and tissue tropism of the virus. However, HBV can also replicate, upon transfection of virus coding plasmids, in cells of other species. In such cross-species transfection experiments with chicken LMH hepatoma cells, we previously observed the formation of HBV genomes with aberrant electrophoretic mobility, in addition to the those DNA species commonly seen in human HepG2 hepatoma cells. Here, we report that these aberrant DNA forms are mainly due to excessive splicing of HBV pregenomic RNA and the abundant synthesis of spliced DNA products, equivalent to those also made in human cells, yet at much lower level. Mutation of the common splice acceptor site abolished splicing and in turn enhanced production of DNA from full-length pgRNA in transfected LMH cells. The absence of splicing made other DNA molecules visible, that were shortened due to the lack of sequences in the core protein coding region. Furthermore, there was nearly full-length DNA in the cytoplasm of LMH cells that was not protected in viral capsids. Remarkably, we have previously observed similar shortened genomes and non-protected viral DNA in human HepG2 cells, yet exclusively in the nucleus where uncoating and final release of viral genomes occurs. Hence, two effects reflecting capsid disassembly in the nucleus in human HepG2 cells are seen in the cytoplasm of chicken LMH cells.  相似文献   

19.
20.
Duck hepatitis B virus (DHBV) obtained from the serum of congenitally infected ducks was used to infect primary duck hepatocyte cultures 1 to 4 days after plating. Virus replication was demonstrated by the appearance, beginning at 2 days after infection, of intracellular covalently closed-circular and single-stranded DHBV DNA replicative intermediates which were not present in the inoculating virus preparation. With increasing time after infection there was further amplification of intracellular relaxed circular, covalently closed-circular, and single-stranded DHBV DNA. Cultures of primary duck hepatocytes are competent for infection with DHBV only during the first 4 days of culture. Synthesis of DHBV core antigen and DHBV surface antigen was detected by immunofluorescence in 10% of the hepatocytes in culture. De novo synthesis and release of infectious virus was also demonstrated. Therefore, all stages of viral replication were carried out by these experimentally infected primary hepatocyte cultures. This system makes it possible to study DHBV replication in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号