首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After staining with acridine orange (AO), the nuclei of unfixed cells from the human female genital tract exhibited the same fluorescence behavior previously observed for human and murine leukocytes and mouse ascites tumor cells. With staining conditions chosen to assure saturation of the green-fluorescing AO-nucleic acid complex in normal cells, corrected fluorescence emission spectra were recorded from the entire nucleus of 341 cells taken from 32 normal and 28 abnormal patients. Intensity of the recorded spectra was expressed in phosphor particle units, a fixed arbitrary unit of fluorescence intensity, to display intensity differences among the spectra from the various cell types. In all abnormal samples, one or more cells were found with 530-nm nuclear fluorescence intensity considerably greater than the maximum intensity recorded from normal cells. Determination of the adequacy of 530-nm nuclear fluorescence intensity as a criterion for cancer detection requires additional investigation. Additional criteria, if needed, may be supplied by the metachromasy of AO-stained unfixed cells.  相似文献   

2.
Acridine orange staining of exfoliated cells from epithelial tissues facilitates discrimination between normal and abnormal cells: abnormal cells develop highly elevated nuclear fluorescence. Comparisons of acridine orange (AO) staining with propidium iodide (PI) or Feulgen staining have shown that: (a) PI staining also provides highly elevated nuclear fluorescence from abnormal cells; (b) the distributions of nuclear fluorescence following AO or PI staining were usually not significantly different as judged by the Kolmogorov-Smirnov test; (c) fluorescence emission spectra from AO and PI stained cells are consistent with the hypothesis that both fluorochromes bind to DNA within cell nuclei; (d) DNAse treatment of AO stained normal cells eliminates the nuclear fluorescence peak from slit-scan contours; RNAse treatment has no effect on nuclear fluorescence; (e) the distribution of abnormal cell nuclear fluorescence after AO staining is usually, but not always, significantly different from the distribution of abnormal cell nuclear absorbance after Feulgen staining, with relative nuclear fluorescence being greater than relative nuclear absorbance. The hypothesis currently most consistent with these results is that elevated Feulgen DNA content can account for only part of the discrimination provided by AO staining, and that the chromatin within abnormal cells is altered so as to increase accessibility of DNA to intercalating dyes.  相似文献   

3.
Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH-stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum-starved and contact-inhibited cell nuclei had the highest intensity, hydroxyurea-treated ones had the lowest intensity, while that of isoleucine-deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.  相似文献   

4.
A cytological technique based on heat denaturation of in situ chromosomal DNA followed by differential reassociation and staining with acridine orange was developed. Mouse nuclei and chromosomes in fixed cytological preparations show a red-orange fluorescence after thermal DNA denaturation (2–4 minutes at 100° C), and fluoresce green if denaturation is followed by a total DNA reassociation (two minutes or more at 65–66°C). — A reassociation time between a few and 60–90 seconds demonstrates the centromeric heterochromatin of chromosomes (which sometimes aggregate in the form of clusters) and the interphase chromocenters in green, the chromosomal arms fluorescing red-orange. Under the same conditions, the Y chromosome presents a pale green or yellow-green fluorescence along its chromatids, but its centromeric region fluoresces weakly. — The interpretation is suggested that the fast-reassociating chromosomal DNA (as detected by AO in centromeric heterochromatin and interphase chromocenters), represents repetitive DNA.  相似文献   

5.
A fusion chimera between the integral nuclear pore membrane protein POM121 and GFP (green fluorescent protein) has been shown to correctly target to the nuclear pores when transiently expressed in a number of mammalian cell types. POM121-GFP is therefore an excellent marker for the noninvasive studies of the nuclear pores in living cells using fluorescence microscopy. We have established a line of neuroblastoma cells stably expressing the POM121-GFP fusion protein. We also monitored the nuclear envelope in living cells after induction of apoptosis or necrosis using 1 μM staurosporine or 100 μMp-benzoquinone, respectively. Interestingly, the POM121-GFP fluorescence was weaker or missing in the apoptotic cells. The disappearance of the nuclear pore marker accompanied apoptotic progression as judged by the degree of chromatin condensation and DNA fragmentation as analyzed by DNA staining and TUNEL assay, respectively. In contrast, the intensity of the nuclear rim fluorescence was unaffected in necrotic cells displaying an abnormal morphology with tilted nuclei. Thus, it was possible to distinguish between apoptotic and necrotic development in living cells using fluorescence microscopy. This cell line provides a fast and convenient model for screening suspected toxic xenobiotics.  相似文献   

6.
daughterless-abo-like (dal) is a maternal-effect semilethal mutation in Drosophila. The nuclear divisions of embryos derived from homozygous dal females are normal through nuclear cycle 10. However, during nuclear cycles 11, 12 and 13, a total of about half of the nuclei in each embryo either fail to divide or fuse with a neighboring nucleus during telophase. These abnormal nuclei eventually sink into the interior of the embryo, leaving their centrosomes behind on the surface. The loss of about one-half of the peripheral nuclei into the interior of the embryo results in these embryos cellularizing during nuclear cycle 14 with about one-half the normal number of cells. Surprisingly, many of these embryos develop a nearly normal larval cuticle and 8% develop to adulthood. Observations of live embryos doubly injected with tubulin and histones that have been fluorescently labeled allows nuclear and centrosomal behavior to be directly followed as the embryo develops. We find that the abnormal nuclei arise from nuclei whose centrosomes have failed to separate normally in the previous interphase. These incompletely separated centrosomes can cause a non-functional spindle to form, leading to a nuclear division failure. Alternatively, they can form an abnormal spindle with a centrosome from a neighboring nucleus, causing two nuclei to share a common spindle pole. Such nuclei with a shared centrosome will undergo telophase fusions, unequal divisions, or division failures later in mitosis. These findings have helped us to understand the function of the centrosome in the Drosophila embryo.  相似文献   

7.
Acridine orange (AO) fluorescence spectra in nuclei and cytoplasm of living myoblasts L6J1 and frog single muscle fibers have been studied using spectral scanning system of Leica TCS SL confocal microscope. AO fluorescence spectra in salt solutions dependent on free AO concentrations or in complex with DNA have also been obtained. Myoblast nuclei fluoresced in the green spectral region with maximum at about 530 nm; nucleoli had the brightest fluorescence. The fluorescence of nuclear chromatin was not uniform. Similar fluorescence of nuclei and nucleoli was observed in frog single muscle fibers. Uniform, weak, green fluorescence was observed in the myoblast cytoplasm. In the sarcoplasm of muscle fibers, AO green fluorescence was seen in A discs. In the cytoplasm of myoblasts and muscle fibers stained with AO, different red, yellow, and green fluorescent granules, which were acidic organelles, were visualized. The comparison of AO fluorescence spectra in living cells with AO fluorescence spectra in buffer solutions with different AO concentrations and AO in complex with DNA enables the estimation of the AO concentration in acidic granules. It is important for the evaluation of these cellular organelles functions in intracellular transport, adaptation, and apoptosis, as well as in a number of pathological processes.  相似文献   

8.
9.
Confocal microscopy requires the use of fluorophores to visualize structures of interest within a specimen. To perform reliable measurements of the intensity of fluorescence, the stain should be specific, penetrate well into tissue sections, and bind stoichiometrically. Furthermore, emission must be linear with respect to DNA content and brightness, and fluorescence should be stable. Confocal microscopy is used to determine DNA ploidy and to analyze texture of nuclei, which is accomplished in three dimensions, because nuclei can be measured within the original tissue context. For this purpose the sample must be stained with a DNA binding fluorophore with the properties described above. Stains with different properties have been developed for different applications. We review here the advantages and disadvantages of these different stains for analyzing DNA ploidy and nuclear texture using three-dimensional microscopy. We conclude that SYBR green I and TO-PRO-3 are the most suitable stains for this purpose at present.  相似文献   

10.
Summary Fluorescence hybridization to interphase nuclei in liquid suspension allows quantification of chromosome-specific DNA sequences using flow cytometry and the analysis of the three-dimensional positions of these sequences in the nucleus using fluorescence microscopy. The three-dimensional structure of nuclei is substantially intact after fluorescence hybridization in suspension, permitting the study of nuclear organization by optical sectioning. Images of the distribution of probe and total DNA fluroescence within a nucleus are collected at several focal planes by quantitative fluorescence microscopy and image processing. These images can be used to reconstruct the three-dimensional organization of the target sequences in the nucleus. We demonstrate here the simultaneous localization of two human chromosomes in an interphase nucleus using two probe labeling schemes (AAF and biotin). Alternatively, dual-beam flow cytometry is used to quantify the amount of bound probe and total DNA content. We demonstrate that the intensity of probe-linked fluorescence following hybridization is proportional to the amount of target DNA over a 100-fold range in target content. This was shown using four human/hamster somatic cell hybrids carrying different numbers of human chromosomes and diploid and tetraploid human cell lines hybridized with human genomic DNA. We also show that populations of male, female, and XYY nuclei can be discriminated by measuring their fluores-cence intensity following hybridization with a Y-chromosome-specific repetitive probe. The delay in the increase in Y-specific fluorescence until the end of S-phase is consistent with the results recorded in previous studies indicating that these sequences are among the last to replicate in the genome. A chromosome-17-specific repetitive probe is used to demonstrate that target sequences as small as one megabase (Mb) can be detected using fluorescence hybridization and flow cytometry.  相似文献   

11.
Summary Air-dried blood smears and erythrocyte suspension from patients infected with Plasmodium falciparum, stained under optimal conditions with acridine orange, permit easy detection of plasmodia with fluorescence microscopy together with a clear cytochemical colour differentiation of nuclear DNA (green or green-yellow) and cytoplasmic RNA (orange-red fluorescence). Judging from fluorescence characteristics of nuclei (DNase sensitive and RNase resistant green or green-yellow), the plasmodial DNA appears to be double-stranded.  相似文献   

12.
The utility of automated image analysis in the distinction between poorly differentiated epidermoid carcinoma (eight cases) and small-cell carcinoma (ten cases) was studied. Material obtained using the bronchial brushing technique was prepared by a cytocentrifugation technique. In each case, a total of 100 bronchial cell nuclei were selected using the Leitz TAS, which measured eight parameters per cell in order to ascertain the homogeneity or the heterogeneity of the nuclear populations. Except for one sample exhibiting preparation artifacts, the method proved capable of differentiating between these two types of bronchial carcinoma, with heterogeneity of the malignant nuclei indicating an epidermoid carcinoma and homogeneity indicating a small-cell carcinoma. A correlation was observed to exist between the morphologic and the morphometric criteria.  相似文献   

13.
We used immunofluorescence staining (monoclonal antibody N45.1) with cytological imprinting to study changes in the intranuclear distribution of 8-hydroxy-2'-deoxyguanosine in renal cells of male Wistar rats after oxidative stress by ferric nitrilotriacetate. In the control proximal tubule cells, small spherical signals were uniformly distributed throughout the nuclei. Under oxidative stress, immunofluorescence intensity was increased, especially near nuclear membrane. In cells with nuclear shrinkage or deformity, intense, diffuse signals throughout the nuclei were observed. Our results suggest that specific nuclear sites are vulnerable to oxidative DNA damage and that diffuse intense signals precede cell death after oxidative stress.  相似文献   

14.
Two fluorescence parameters and size are used in a flow through system to enrich sputum specimens for cancer cells. Human cells in sputum which are stained with acridine orange show a characteristic distribution of red and green fluorescence from which cancer cells can be localized. The peak enrichment is obtained by selectively sorting cells with the largest values of red and green fluorescence. Cancer cells located in other distribution regions having smaller fluorescence intensities show progressively diminished nuclear and cytoplasmic tinctorial features by Papanicolaou stain, consistent with the decreased intensity of red and green fluorescence.  相似文献   

15.
Heat shock protein 90 (Hsp90) is an abundant protein and essential for all eukaryotic cells. The expression of Hsp90 is further enhanced after exposure to stress factors, e.g. a heat shock. Many proteins interacting with Hsp90 as well as the various functions for Hsp90 have been described. In this study, an Hsp90alpha fusion protein along with the enhanced green fluorescence protein (EGFP) was expressed under the control of the human cytomegalovirus immediate early promoter. EGFP-Hsp90alpha was mainly localized in the cytoplasm, with only minor amounts inside the nuclei. No EGFP-Hsp90alpha could be detected inside the nucleoli. Following exposure to elevated temperatures, higher amounts of EGFP-Hsp90alpha are inside the nucleus, but not within the nucleoli. As the most remarkable finding under these conditions, an association of EGFP-Hsp90alpha with the nuclear membrane became visible.  相似文献   

16.
Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green–yellow, yellow–orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.  相似文献   

17.
18.
Three DNA-localizing fluorochromes used in conjunction with epi (incident) UV illumination were examined for sensitivity and selectivity for the cytofluorometric determination of nuclear DNA in ten species of six algal genera: Mougeotia, Oedogonium, Sirogonium, Spirogyra and Zygnema among the green algae, and the marine red alga Polysiphonia boldii. In comparison with absorption photometry for the determination of nuclear DNA, the cytofluorometric procedure proved to be simpler and considerably more sensitive. Following staining with 4',6-diamidino-2-phenylindole (DAPI), nuclei fluoresce blue-white, the fluorescence intensity of the DNA-DAPI complex being considerably greater than that of the unbound dye molecule. Algal strains stained with 2,5-bis[4'-aminopheny](1')]-1,3,4-oxadiazole (BAO) also showed brilliant blue-white nuclear fluorescence. Although the BAO schedule requires the use of freshly prepared dye and sulfite water, and careful control of hydrolysis, nuclear fluorescence of the stained specimens does not fade under irradiation of the UV beam as rapidly as it does with certain other fluorochrome procedures. A more useful fluorochrome was the fungal antibiotic mithramycin. Its staining schedule is simple and the bright orange-yellow fluorescence of the nuclei is associated with an exceptional degree of sensitivity and specificity for DNA. Forty-eight-year-old preserved filaments of Spirogyra jatobae, stained with either BAO or mithramycin, exhibited a fluorescence brilliance of nuclear and chloroplast DNA equal to that of fresh specimens of this species. The three schedules, but particularly the one with mithramycin, have proven useful in providing indirect evidence for variation in ploidy level in several of the above algal genera, and in verifying the assumed ploidy level of the gametophyte (haploid) and tetrasporophyte (diploid) of Polysiphonia boldii  相似文献   

19.
The goal of fluorometric analysis is to serve as an efficient, cost effective, high throughput method of analyzing phagocytosis and other cellular processes. This technique can be used on a variety of cell types, both adherent and non-adherent, to examine a variety of cellular properties. When studying phagocytosis, fluorometric technique utilizes phagocytic cell types such as macrophages, and fluorescently labeled opsonized particles whose fluorescence can be extinguished in the presence of trypan blue. Following plating of adherent macrophages in 96-well plates, fluorescent particles (green or red) are administered and cells are allowed to phagocytose for varied amounts of time. Following internalization of fluorescent particles, cells are washed with trypan blue, which facilitates extinction of fluorescent signal from bacteria which are not internalized, or are merely adhering to the cell surface. Following the trypan wash, cells are washed with PBS, fixed, and stained with DAPI (nuclear blue fluorescent label), which serves to label nuclei of cells. By a simple fluorometric quantification through plate reading of nuclear (blue) or particle (red/green) fluorescence we can examine the ratio of relative fluorescence units of green:blue and determine a phagocytic index indicative of amount of fluorescent bacteria internalized per cell. The duration of assay using a 96-well method and multichannel pipettes for washing, from end of phagocytosis to end of data acquisition, is less than 45 min. Flow cytometry could be used in a similar manner but the advantage of fluorometry is its high throughput, rapid method of assessment with minimal manipulation of samples and quick quantification of fluorescent intensity per cell. Similar strategies can be applied to non adherent cells, live labeled bacteria, actin polymerization, and essentially any process utilizing fluorescence. Therefore, fluorometry is a promising method for its low cost, high throughput capabilities in the study of cellular processes.  相似文献   

20.
Kinesin-1 and dynein are recruited to the nuclear envelope by the Caenorhabditis elegans klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 to move nuclei. The mechanisms of how these motors are coordinated to mediate nuclear migration are unknown. Time-lapse differential interference contrast and fluorescence imaging of embryonic hypodermal nuclear migration events were used to characterize the kinetics of nuclear migration and determine microtubule dynamics and polarity. Wild-type nuclei display bidirectional movements during migration and are also able to roll past cytoplasmic granules. unc-83, unc-84, and kinesin-1 mutants have severe nuclear migration defects. Without dynein, nuclear migration initiates normally but lacks bidirectional movement and shows defects in nuclear rolling, implicating dynein in resolution of cytoplasmic roadblocks. Microtubules are highly dynamic during nuclear migration. EB1::green fluorescence protein imaging demonstrates that microtubules are polarized in the direction of nuclear migration. This organization of microtubules fits with our model that kinesin-1 moves nuclei forward and dynein functions to move nuclei backward for short stretches to bypass cellular roadblocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号