首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Albà M 《Genome biology》2001,2(1):REVIEWS3002-4
SUMMARY: Replicative DNA polymerases are essential for the replication of the genomes of all living organisms. On the basis of sequence similarities they can be classified into three types. Type A polymerases are homologous to bacterial polymerases I, Type B comprises archaebacterial DNA polymerases and eukaryotic DNA polymerase alpha, and the bacterial polymerase III class make up type C. Structures have been solved for several type A and B polymerases, which share a similar architecture. The structure of type C is not yet known. The catalytic mechanism of all three types involves two metal-ion-binding acidic residues in the active site. Replicative polymerases are constitutively expressed, but their activity is regulated through the cell cycle and in response to different growth conditions.  相似文献   

2.
Structures of multisubunit RNA polymerases strongly differ from the many known structures of single subunit DNA and RNA polymerases. However, in functional complexes of these diverse enzymes, nucleic acids take a similar course through the active center. This finding allows superposition of diverse polymerases and reveals features that are functionally equivalent. The entering DNA duplex is bent by almost 90 degrees with respect to the exiting template-product duplex. At the point of bending, a dramatic twist between subsequent DNA template bases aligns the "coding" base with the binding site for the incoming nucleoside triphosphate (NTP). The NTP enters through an opening that is found in all polymerases, and, in most cases, binds between an alpha-helix and two catalytic metal ions. Subsequent phosphodiester bond formation adds a new base pair to the exiting template-product duplex, which is always bound from the minor groove side. All polymerases may undergo "induced fit" upon nucleic acid binding, but the underlying conformational changes differ.  相似文献   

3.
Small, icosahedral double-stranded DNA bacteriophage pack their genomes tightly into preformed protein capsids using an ATP-driven motor. Coarse-grain molecular-mechanics models provide a detailed picture of DNA packaging in bacteriophage, revealing how conformation depends on capsid size and shape, and the presence or absence of a protein core. The forces that oppose packaging have large contributions from both electrostatic repulsions and the entropic penalty of confining the DNA into the capsid, whereas elastic deformations make only a modest contribution. The elastic deformation energy is very sensitive to the final conformation, whereas the electrostatic and entropic penalties are not, so the packaged DNA favors conformations that minimize the bending energy.  相似文献   

4.
Life as we know it, simply would not exist without DNA replication. All living organisms utilize a complex machinery to duplicate their genomes and the central role in this machinery belongs to replicative DNA polymerases, enzymes that are specifically designed to copy DNA. Hassle-free DNA duplication exists only in an ideal world, while in real life, it is constantly threatened by a myriad of diverse challenges. Among the most pressing obstacles that replicative polymerases often cannot overcome by themselves are lesions that distort the structure of DNA. Despite elaborate systems that cells utilize to cleanse their genomes of damaged DNA, repair is often incomplete. The persistence of DNA lesions obstructing the cellular replicases can have deleterious consequences. One of the mechanisms allowing cells to complete replication is Translesion DNA Synthesis (TLS)”. TLS is intrinsically error-prone, but apparently, the potential downside of increased mutagenesis is a healthier outcome for the cell than incomplete replication. Although most of the currently identified eukaryotic DNA polymerases have been implicated in TLS, the best characterized are those belonging to the Y-family of DNA polymerases (pols η, ι, κ and Rev1), which are thought to play major roles in the TLS of persisting DNA lesions in coordination with the B-family polymerase, pol ζ. In this review, we summarize the unique features of these DNA polymerases by mainly focusing on their biochemical and structural characteristics, as well as potential protein–protein interactions with other critical factors affecting TLS regulation.  相似文献   

5.
Summary The evolution of genetic material can be divided into at least three major phases: first, genomes of nucleic acid-like molecules; secondly, genomes of RNA; and finally, double-stranded DNA genomes such as those present in all contemporary cells. Using properties of nucleic acid molecules, we attempt to explain the evolutionary transition from RNA alone as a cellular informational macromolecule prior to the evolution of cell systems based on double-stranded DNA. The idea that ribonucleic acid-based cellular genomes preceded DNA is based on the following: (1) protein synthesis can occur in the absence of DNA but not of RNA; (2) RNA molecules have some catalytic properties; (3) the ubiquity of purine and pyridine nucleotide coenzymes as well as other similar ribonucleotide cofactors in metabolic pathways; and (4) the fact that the biosynthesis of deoxyribonucleotides always proceeds via the enzymatic reduction of ribonucleotides.The RNA prior to DNA hypothesis can be further developed by understanding the selective pressures that led to the biosynthesis of deoxyribose, thymine, and proofreading DNA polymerases. Taken together these observations suggest to us that DNA was selected as an informational molecule in cells to stabilize earlier RNA-protein replicating systems. These arguments include the facts that (1) the 2-deoxy-containing phosphodiester backbone is more stable in aqueous conditions and in the presence of transition metal ions (such as Zn2+) than its ribo-equivalents; (2) the absence of proofreading activity in RNA polymerases leads to a higher rate of mutation in RNA genomes relative to DNA; (3) information in RNA degrades because of the tendency of cytosine to deaminate to uracil and the lack of a correcting enzyme; and (4) UV irradiation produces a larger number of photochemical changes in RNA molecules relative to double-stranded DNA. The absence of atmospheric UV attenuation during the early Earth environment (Hadean and early Archean) would have imposed an intense selection pressure favoring duplex DNA over other genetic information storage systems.If RNA preceded DNA as a reservior of cellular genetic information, then an RNA-replicating oligopeptide must have been one of the earliest protoenzymes from which RNA polymerase presumably evolved. We conclude that RNA polymerases are among the oldest classes of enzymes.  相似文献   

6.
There is now convincing evidence that genomes are organized into loops, and that looping brings distant genes together so that they can bind to local concentrations of polymerases in "factories" or "hubs." As there remains no systematic analysis of how looping affects the probability that a gene can access binding sites in such factories/hubs, we used an algorithm that we devised and Monte Carlo methods to model a DNA or chromatin loop as a semiflexible (self-avoiding) tube attached to a sphere; we examine how loop thickness, rigidity, and contour length affect where particular segments of the loop lie relative to binding sites on the sphere. Results are compared with those obtained with the traditional model of an (infinitely thin) freely jointed chain. They provide insights into the packing problem (how long genomes are packed into small nuclei), and action-at-a-distance (how firing of one origin or gene can prevent firing of an adjacent one).  相似文献   

7.
A new method to determine entropic profiles in DNA sequences is presented. It is based on the chaos-game representation (CGR) of gene structure, a technique which produces a fractal-like picture of DNA sequences. First, the CGR image was divided into squares 4-m in size (m being the desired resolution), and the point density counted. Second, appropriate intervals were adjusted, and then a histogram of densities was prepared. Third, Shannon's formula was applied to the probability-distribution histogram, thus obtaining a new entropic estimate for DNA sequences, the histogram entropy , a measurement that goes with the level of constraints on the DNA sequence. Lastly, the entropic profile for the sequence was drawn, by considering the entropies at each resolution level, thus providing a way to summarize the complexity of large genomic regions or even entire genomes at different resolution levels. The application of the method to DNA sequences reveals that entropic profiles obtained in this way, as opposed to previously published ones, clearly discriminate between random and natural DNA sequences. Entropic profiles also show a different degree of variability within and between genomes. The results of these analyses are discussed in relation both to the genome compartmentalization in vertebrates and to the differential action of compositional and/or functional constraints on DNA sequences.  相似文献   

8.
Proofreading DNA polymerases share common short peptide motifs that bind Mg(2+) in the exonuclease active center; however, hydrolysis rates are not the same for all of the enzymes, which indicates that there are functional and likely structural differences outside of the conserved residues. Since structural information is available for only a few proofreading DNA polymerases, we developed a genetic selection method to identify mutant alleles of the POL3 gene in Saccharomyces cerevisiae, which encode DNA polymerase delta mutants that replicate DNA with reduced fidelity. The selection procedure is based on genetic methods used to identify "mutator" DNA polymerases in bacteriophage T4. New yeast DNA polymerase delta mutants were identified, but some mutants expected from studies of the phage T4 DNA polymerase were not detected. This would indicate that there may be important differences in the proofreading pathways catalyzed by the two DNA polymerases.  相似文献   

9.
Lovett ST 《Molecular cell》2007,27(4):523-526
Our view of DNA replication has been of two coupled DNA polymerases anchored to the replication fork helicase in a "replisome" complex, synthesizing leading and lagging strands simultaneously. New evidence suggests that three DNA polymerases can be accommodated into the replisome and that polymerases and repair factors are dynamically recruited and engaged without dismantling of the replisome.  相似文献   

10.
Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.  相似文献   

11.
12.

Background

Eukaryotic family A DNA polymerases are involved in mitochondrial DNA replication or translesion DNA synthesis. Here, we present evidence that the sole family A DNA polymerase from the parasite protozoan E. histolytica (EhDNApolA) localizes to the nucleus and that its biochemical properties indicate that this DNA polymerase may be involved in translesion DNA synthesis.

Methodology and Results

EhDNApolA is the sole family A DNA polymerase in E. histolytica. An in silico analysis places family A DNA polymerases from the genus Entamoeba in a separate branch of a family A DNA polymerases phylogenetic tree. Biochemical studies of a purified recombinant EhDNApolA demonstrated that this polymerase is active in primer elongation, is poorly processive, displays moderate strand displacement, and does not contain 3′–5′ exonuclease or editing activity. Importantly, EhDNApolA bypasses thymine glycol lesions with high fidelity, and confocal microscopy demonstrates that this polymerase is translocated into the nucleus. These data suggest a putative role of EhDNApolA in translesion DNA synthesis in E. histolytica.

Conclusion

This is the first report of the biochemical characterization of a DNA polymerase from E. histolytica. EhDNApolA is a family A DNA polymerase that is grouped into a new subfamily of DNA polymerases with translesion DNA synthesis capabilities similar to DNA polymerases from subfamily ν.  相似文献   

13.
DNA polymerase eta is unique among eukaryotic polymerases in its proficient ability to replicate through a variety of distorting DNA lesions. We report here the crystal structure of the catalytic core of S. cerevisiae DNA polymerase eta, determined at 2.25A resolution. The structure reveals a novel polydactyl right hand-shaped molecule with a unique polymerase-associated domain. We identify the catalytic residues and show that the fingers and thumb domains are unusually small and stubby. In particular, the unexpected absence of helices "O" and "O1" in the fingers domain suggests that openness of the active site is the critical feature which enables DNA polymerase eta to replicate through DNA lesions such as a UV-induced cis-syn thymine-thymine dimer.  相似文献   

14.
A new, non-adaptationist theory of evolution of genomic complexity was recently proposed by Lynch and Conery. This concept holds that increase in complexity seen in eukaryotic genomes is a 'syndrome' caused by increase in genome entropy, which is inevitably triggered by reduction of population size. Here, I discuss the definitions of genomic entropy and complexity and the evidence supporting the entropic theory of genome complexity evolution, including new observations on concordant gain and loss of genes and introns in eukaryotic genomes. I further consider the far-reaching biological and philosophical implications of this theory.  相似文献   

15.
Significant advances have been made recently in the study of polymerases. First came the realization that there are many more DNA polymerases than originally thought; indeed, no fewer than 14 template-dependent DNA polymerases are found in mammals. Concurrent structural studies of DNA polymerases bound to DNA and incoming nucleotide have revealed how these remarkable copying machines select the correct deoxynucleoside triphosphate among a sea of nucleotides. A whole new level of insight into DNA replication fidelity has been reached as a result of recently determined crystal structures of DNA lesions in the context of the active sites of repair, replicative and specialized DNA polymerases. These structures illustrate why some lesions can be bypassed readily, whereas others are strong blocks to DNA replication.  相似文献   

16.
The newly found Y-family DNA polymerases are characterized by low fidelity replication using an undamaged template and the ability to carry out translesion DNA synthesis. The crystal structures of three Y-family polymerases, alone or complexed with DNA and nucleotide substrate, reveal a conventional right-hand-like catalytic core consisting of finger, thumb and palm domains. The finger and thumb domains are unusually small resulting in an open and spacious active site, which can accommodate mismatched base pairs as well as various DNA lesions. Although devoid of a 3'-->5' exonuclease activity, the Y-family polymerases possess a unique "little finger" domain that facilitates DNA association, catalytic efficiency and interactions with auxiliary factors. Expression of Y-family polymerases is often induced by DNA damage, and their recruitment to the replication fork is mediated by beta-clamp, clamp loader, single-strand-DNA-binding protein and RecA in Escherichia coli, and by ubiquitin-modified proliferating cell nuclear antigen in yeast.  相似文献   

17.
DNA damage is generated continually inside cells. In order to be able to replicate past damaged bases (translesion synthesis), the cell employs a series of specialised DNA polymerases, which singly or in combination, are able to bypass many different types of damage. The polymerases have similar structural domains to classical polymerases, but they have a more open structure to allow altered bases to fit into their active sites. Although not required for replication of undamaged DNA, some at least of these polymerases are located in replication factories. Emerging evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications.  相似文献   

18.
The possible conformational changes of DNA polymerase IV (Dpo4) before and after the nucleotidyl-transfer reaction are investigated at the atomic level by dynamics simulations to gain insight into the mechanism of low-fidelity polymerases and identify slow and possibly critical steps. The absence of significant conformational changes in Dpo4 before chemistry when the incoming nucleotide is removed supports the notion that the "induced-fit" mechanism employed to interpret fidelity in some replicative and repair DNA polymerases does not exist in Dpo4. However, significant correlated movements in the little finger and finger domains, as well as DNA sliding and subtle catalytic-residue rearrangements, occur after the chemical reaction when both active-site metal ions are released. Subsequently, Dpo4's little finger grips the DNA through two arginine residues and pushes it forward. These metal ion correlated movements may define subtle, and possibly characteristic, conformational adjustments that operate in some Y-family polymerase members in lieu of the prominent subdomain motions required for catalytic cycling in other DNA polymerases like polymerase beta. Such subtle changes do not easily provide a tight fit for correct incoming substrates as in higher-fidelity polymerases, but introduce in low-fidelity polymerases different fidelity checks as well as the variable conformational-mobility potential required to bypass different lesions.  相似文献   

19.

   

Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases.  相似文献   

20.
DNA damage is generated continually inside cells. In order to be able to replicate past damaged bases (translesion synthesis), the cell employs a series of specialised DNA polymerases, which singly or in combination, are able to bypass many different types of damage. The polymerases have similar structural domains to classical polymerases, but they have a more open structure to allow altered bases to fit into their active sites. Although not required for replication of undamaged DNA, some at least of these polymerases are located in replication factories. Emerging evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号