首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, a mammalian tRNA which was previously designated as an opal suppressor seryl-tRNA and phosphoseryl-tRNA was shown to be a selenocysteyl-tRNA (B. J. Lee, P. J. Worland, J. N. Davis, T. C. Stadtman, and D. Hatfield, J. Biol. Chem. 264:9724-9727, 1989). Hence, this tRNA is now designated as selenocysteyl-tRNA[Ser]Sec, and its function is twofold, to serve as (i) a carrier molecule upon which selenocysteine is biosynthesized and (ii) as a donor of selenocysteine, which is the 21st naturally occurring amino acid of protein, to the nascent polypeptide chain in response to specific UGA codons. In the present study, the selenocysteine tRNA gene was sequenced from Xenopus laevis, Drosophila melanogaster, and Caenorhabditis elegans. The tRNA product of this gene was also identified within the seryl-tRNA population of a number of higher and lower animals, and the human tRNA[Ser]Sec gene was used as a probe to identify homologous sequences within genomic DNAs of organisms throughout the animal kingdom. The studies showed that the tRNA[Ser]Sec gene has undergone evolutionary change and that it is ubiquitous in the animal kingdom. Further, we conclude that selenocysteine-containing proteins, as well as the use of UGA as a codon for selenocysteine, are far more widespread in nature than previously thought.  相似文献   

2.
There are two possible mechanisms (co- or post-translational) for incorporation of Se into glutathione peroxidase in which selenocysteine presents at the active site of the enzyme and corresponds to UGA on the mRNA. We studied the above mechanisms using opal suppressor tRNA in mammals. Opal suppressor tRNA did not accept any selenocysteine and phosphoseryl-tRNA did not change to selenocysteyl-tRNA. Meanwhile, phosphoprotein changed to a protein containing selenocysteine by the incubation with H2Se and some enzymes. From these results, we propose that phosphoserine on glutathione peroxidase (apo-enzyme), which is synthesized with phosphoseryl-tRNA, is converted to selenocysteine in the mature enzyme, by a posttranslational mechanism. Opal suppressor tRNA may play a role to synthesize the apo-enzyme of glutathione peroxidase.  相似文献   

3.
T Mizutani  T Hitaka 《FEBS letters》1988,232(1):243-248
This study has been undertaken in order to elucidate the mechanisms of incorporation of Se into glutathione peroxidase (GSHPx), in which selenocysteine corresponds to the opal termination codon UGA on the mRNA. We studied the above mechanisms using an opal suppressor tRNA, prepared from bovine liver, and casein as a model protein for the GSHPx apo-enzyme which might contain phosphoserine. The results showed that opal suppressor tRNA did not accept selenocysteine (lower than 0.1 mmol/mol) under the standard conditions. A trace amount of phosphoseryl-tRNA was converted to selenocysteyl-tRNA by incubation with H2Se and some enzymes. Meanwhile, a number of phosphoserine residues in casein were converted to selenocysteine residues by incubation with H2Se and enzymes. These results suggest that opal suppressor tRNA plays a role in synthesizing GSHPx via co- and/or post-translational mechanisms.  相似文献   

4.
Eukaryotic selenocysteine (Sec) protein insertion machinery was thought to be restricted to animals, but the occurrence of both Sec-containing proteins and the Sec insertion system was recently found in Chlamydomonas reinhardtii, a member of the plant kingdom. Herein, we used RT-PCR to determine the sequence of C. reinhardtii Sec tRNA[Ser]Sec, the first non-animal eukaryotic Sec tRNA[Ser]Sec sequence. Like its animal counterpart, it is 90 nucleotides in length, is aminoacylated with serine by seryl-tRNA synthetase, and decodes specifically UGA. Evolutionary analyses of known Sec tRNAs identify the C. reinhardtii form as the most diverged eukaryotic Sec tRNA[Ser]Sec and reveal a common origin for this tRNA in bacteria, archaea, and eukaryotes.  相似文献   

5.
The opal termination codon UGA is used in both prokaryotic and eukaryotic species to direct the specific insertion of selenocysteine into certain selenium-dependent enzymes. So far a formate dehydrogenase (hydrogenase-linked) of Escherichia coli and glutathione peroxidases of murine, human and rat origin have been identified as enzymes containing selenocysteine residues encoded by UGA. A novel seryl-tRNA, anticodon UCA, that specifically recognizes the UGA codon is required for selenocysteine incorporation into formate dehydrogenase. A eukaryotic UGA suppressor tRNA with UCA anticodon that accepts serine and is phosphorylated to O-phosphoseryl-tRNA may have a corresponding function in glutathione peroxidase synthesis. Other factors required for the unusual usage of the in-frame UGA codons to specify selenocysteine incorporation and the biochemical mechanism involved in distinguishing these from normal UGA termination codons are discussed.  相似文献   

6.
7.
BD-cellulose and RPC-5 chromatography of tRNA isolated from lactating bovine mammary gland showed the presence of four seryl-tRNA isoacceptors. The species, tRNA IV Ser, with the strongest affinity for BD-cellulose (required ethanol in the elution buffer) could be phosphorylated in the presence of serine, [gamma-32 P]-ATP, seryl-tRNA synthetase and phosphotransferase activity from the same tissue. O-Phosphoserine was identified as the 32P-labelled product after mild alkaline hydrolysis of this aminoacylated tRNA. Pancreatic ribonuclease treatment of the aminoacylated tRNA yielded a labelled product which was identified as phosphoseryladenosine. These results indicated there is a specific phosphoseryl tRNA species in lactating bovine mammary gland. It appears that the formation of phosphoseryl-tRNA proceeds by enzymic phosphorylation of seryl-tRNA.  相似文献   

8.
K Forchhammer  K Boesmiller  A B?ck 《Biochimie》1991,73(12):1481-1486
The selAB operon codes for the proteins selenocysteine synthase and SELB which catalyse the synthesis and cotranslational insertion of selenocysteine into protein. This communication deals with the biochemical characterisation of these proteins and in particular with their specific interaction with the selenocysteine-incorporating tRNA(Sec). Selenocysteine synthase catalyses the synthesis of selenocysteyl-tRNA(Sec) from seryl-tRNA(Sec) in a pyridoxal phosphate-dependent reaction mechanism. The enzyme specifically recognizes the tRNA(Sec) molecule; a cooperative interaction between the tRNA binding site and the catalytically active pyridoxal phosphate site is suggested. SELB is an EF-Tu-like protein which specifically complexes selenocysteyl-tRNA(Sec). Interaction with the selenol group of the side chain of the aminoacylated residue is a prerequisite for the formation of a stable SELB.tRNA complex. Mechanistically, this provides the biochemical basis for the exclusive selection of selenocysteyl-tRNA(Sec) in the decoding step of a selenocysteine-specific UGA triplet.  相似文献   

9.
10.
Takaharu Mizutani   《FEBS letters》1989,250(2):142-146
In order to clarify the mechanisms of selenocysteine incorporation into glutathione peroxidase, some evidence to show the in vitro conversion of phosphoseryl-tRNA to selenocysteyl-tRNA is reported. [3H]Phosphoseryl-tRNA was incubated in a reaction mixture composed of SeO2, glutathione and NADPH in the presence of selenium-transferase partially purified. Analyses of amino acids on the product tRNA showed that a part (4%) of [3H]phosphoseryl-tRNA was changed to [3H]selenocysteyl-tRNA. The conversion from seryl-tRNAsu or major seryl-tRNAIGA was not found. Selenium-transferase was essential for the conversion. [3H]Selenocysteine, liberated from the tRNA, was modified with iodoacetic acid. The product was confirmed to be carboxymethyl-selenocysteine by two-dimensional TLC. Selenocysteyl-tRNAsu should be used to synthesize glutathione peroxidase by co-translational mechanisms.  相似文献   

11.
Mutations in selC, which reduce the 8-base pair aminoacyl-acceptor helix to the canonical 7-base pair length (tRNA(Sec)(delAc] or which replace the extra arm of tRNA(Sec) by that of a serine acceptor tRNA species (tRNA(Sec)(ExS), block the function in selenoprotein synthesis in vivo (Baron, C., Heider, J., and B?ck, A. (1990) Nucleic Acids Res. 18, 6761-6766). tRNA(Sec), tRNA(Sec)(delAc), and tRNA(Sec)(ExS) were purified and analyzed for their interaction with purified seryl-tRNA synthetase, selenocysteine synthase and translation factors SELB and EF-Tu. It was found that seryl-tRNA synthetase displays 10-fold impaired Km and Kcat values for tRNA(Sec) in comparison to tRNA(Ser), decreasing the overall charging efficiency (Kcat/Km) of tRNA(Sec) to 1% of that characteristic for tRNA(Ser). tRNA(Sec)(ExS) was a less efficient substrate for the enzyme (Kcat/Km 0.2% of the tRNA(Ser) value) whereas the tRNA(Ser)(delAc) variant was charged with an approximately 2-3-fold improved rate compared to wild-type tRNA(Sec). Both mutant tRNA variants, when charged with L-serine, were able to interact with selenocysteine synthase to give rise to selenocysteyl-tRNA with tRNA(Sec)(ExS) being as efficient as wild-type tRNA(Sec). Seryl-tRNA(Sec)(delAc), on the other hand, was selenylated very slowly. Reduction of the length of the aminoacyl-acceptor stem to 7 base pairs prevented the interaction with translation factor SELB but allowed binding to EF-Tu, irrespective of whether tRNA(Sec)(delAc) was charged with serine or selenocysteine. The aminoacyl-acceptor helix of tRNA(Sec), therefore, is a major determinant directing binding to SELB and precluding interaction with EF-Tu.  相似文献   

12.
Study of mammalian selenocysteyl-tRNA synthesis with [75Se]HSe   总被引:3,自引:0,他引:3  
The mechanisms of the synthesis of mammalian selenocysteyl-(Scy)-tRNA were studied using [75SE]H2Se. H2Se was prepared from [75Se]selenite, glutathione, NADPH and glutathione reductase, and was purified by chromatography. It was confirmed that this H2Se was a Se donor in the reaction of the synthesis of Scy-tRNA. [75Se]Scy, liberated from aminoacyl-tRNA, was analyzed by TLC on silica gel an subsequent autoradiography. The activity of Scy-tRNA synthesis was found in the supernatant at 105,000 x g of the murine liver extract, but not in the precipitate. The supernatant was chromatographed on DEAE-cellulose, and the activity was eluted at a concentration of 0.17 M KCl. This position is at the front shoulder of the peak of seryl-tRNA synthetase which was eluted at 0.20 M KCl. Major serine tRNA(IGA) is not a substrate on which to synthesize Scy-tRNA, but natural opal suppressor serine tRNA is. On a chromatographic pattern of a Scy-tRNA preparation on Sephacryl S-200, the radioactivity of 75Se was eluted at the tRNA peak. This showed that Scy bound to tRNA. The active protein fraction from DEAE-cellulose did not contain tRNA kinase, therefore Scy-tRNA must be directly synthesized from seryl-tRNA, not through phosphoseryl-tRNA. This mechanism is similar to that seen in Escherichia coli [1991, J. Biol. Chem. 266, 6324].  相似文献   

13.
A regulatory role for Sec tRNA[Ser]Sec in selenoprotein synthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium is biologically active through the functions of selenoproteins that contain the amino acid selenocysteine. This amino acid is translated in response to in-frame UGA codons in mRNAs that include a SECIS element in its 3' untranslated region, and this process requires a unique tRNA, referred to as tRNA([Ser]Sec). The translation of UGA as selenocysteine, rather than its use as a termination signal, is a candidate restriction point for the regulation of selenoprotein synthesis by selenium. A specialized reporter construct was used that permits the evaluation of SECIS-directed UGA translation to examine mechanisms of the regulation of selenoprotein translation. Using SECIS elements from five different selenoprotein mRNAs, UGA translation was quantified in response to selenium supplementation and alterations in tRNA([Ser]Sec) levels and isoform distributions. Although each of the evaluated SECIS elements exhibited differences in their baseline activities, each was stimulated to a similar extent by increased selenium or tRNA([Ser]Sec) levels and was inhibited by diminished levels of the methylated isoform of tRNA([Ser]Sec) achieved using a dominant-negative acting mutant tRNA([Ser]Sec). tRNA([Ser]Sec) was found to be limiting for UGA translation under conditions of high selenoprotein mRNA in both a transient reporter assay and in cells with elevated GPx-1 mRNA. This and data indicating increased amounts of the methylated isoform of tRNA([Ser]Sec) during selenoprotein translation indicate that it is this isoform that is translationally active and that selenium-induced tRNA methylation is a mechanism of regulation of the synthesis of selenoproteins.  相似文献   

14.
Selenocysteine insertion during selenoprotein biosynthesis begins with the aminoacylation of selenocysteine tRNA[ser]sec with serine, the conversion of the serine moiety to selenocysteine, and the recognition of specific UGA codons within the mRNA. Selenocysteine tRNA[ser]sec exists as two major forms, differing by methylation of the ribose portion of the nucleotide at the wobble position of the anticodon. The levels and relative distribution of these two forms of the tRNA are influenced by selenium in mammalian cells and tissues. We have generated Chinese hamster ovary cells that exhibit increased levels of tRNA[ser]sec following transfection of the mouse tRNA[ser]sec gene. The levels of selenocysteine tRNA[ser]sec in transfectants increased proportionally to the number of stably integrated copies of the tRNA[ser]sec gene. Although we were able to generate transfectants overproducing tRNA[ser]sec by as much as tenfold, the additional tRNA was principally retained in the unmethylated form. Selenium supplementation could not significantly affect the relative distributions of the two major selenocysteine tRNA[ser]sec isoacceptors. In addition, increased levels of tRNA[ser]sec did not result in measurable alterations in the levels of selenoproteins, including glutathione peroxidase.  相似文献   

15.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

16.
The selenocysteine (Sec) tRNA population in Drosophila melanogaster is aminoacylated with serine, forms selenocysteyl-tRNA, and decodes UGA. The Km of Sec tRNA and serine tRNA for seryl-tRNA synthetase is 6.67 and 9.45 nM, respectively. Two major bands of Sec tRNA were resolved by gel electrophoresis. Both tRNAs were sequenced, and their primary structures were indistinguishable and colinear with that of the corresponding single copy gene. They are 90 nucleotides in length and contain three modified nucleosides, 5-methylcarboxymethyluridine, N6-isopentenyladenosine, and pseudouridine, at positions 34, 37, and 55, respectively. Neither form contains 1-methyladenosine at position 58 or 5-methylcarboxymethyl-2'-O-methyluridine, which are characteristically found in Sec tRNA of higher animals. We conclude that the primary structures of the two bands of Sec tRNA resolved by electrophoresis are indistinguishable by the techniques employed and that Sec tRNAs in Drosophila may exist in different conformational forms. The Sec tRNA gene maps to a single locus on chromosome 2 at position 47E or F. To our knowledge, Drosophila is the lowest eukaryote in which the Sec tRNA population has been characterized to date.  相似文献   

17.
T Mizutani  Y Tachibana 《FEBS letters》1986,207(1):162-166
Suppressor [32P]phosphoseryl-tRNA, prepared using bovine seryl-tRNA synthetase and ATP:seryl-tRNA phosphotransferase, was mixed with rabbit reticulocyte lysates containing endogenous hemoglobin mRNA having the termination codon UGA (opal). The chromatographic pattern of the lysate on Sephacryl S-200 showed that the radioactivity of [32P]phosphate in the hot trichloroacetic acid-precipitate (phosphoprotein) was eluted at the position between mature hemoglobin and globin subunits. The phosphoprotein, obtained by chromatography on S-200, moved to the position corresponding to that of globin readthrough protein on SDS-PAGE. The analyses of the hydrolyzate of the phosphoprotein showed the presence of phosphoserine in the protein. These results suggest that animal opal suppressor tRNA functions in vitro to transfer phosphoserine to the position of the termination codon UGA (opal) on mRNA.  相似文献   

18.
J Heider  C Baron    A Bck 《The EMBO journal》1992,11(10):3759-3766
Incorporation of selenocysteine into proteins is directed by specifically 'programmed' UGA codons. The determinants for recognition of the selenocysteine codon have been investigated by analysing the effect of mutations in fdhF, the gene for formate dehydrogenase H of Escherichia coli, on selenocysteine incorporation. It was found that selenocysteine was also encoded when the UGA codon was replaced by UAA and UAG, provided a proper codon-anticodon interaction was possible with tRNA(Sec). This indicates that none of the three termination codons can function as efficient translational stop signals in that particular mRNA position. The discrimination of the selenocysteine 'sense' codon from a regular stop codon has previously been shown to be dependent on an RNA secondary structure immediately 3' of the UGA codon in the fdhF mRNA. It is demonstrated here that the correct folding of this structure as well as the existence of primary sequence elements located within the loop portion at an appropriate distance to the UGA codon are absolutely required. A recognition sequence can be defined which mediates specific translation of a particular codon inside an mRNA with selenocysteine and a model is proposed in which translation factor SELB interacts with this recognition sequence, thus forming a quaternary complex at the mRNA together with GTP and selenocysteyl-tRNA(Sec).  相似文献   

19.
硒蛋白含有一种特殊氨基酸--硒代半胱氨酸。在翻译阶段,该氨基酸从硒蛋白mRNA编码区的UGA密码子处掺入多肽链。已证明它由丝氨酸和活性硒供体分子合成。一种独特的tRNA、某些特殊蛋白质因子以及硒蛋白mRNA的特殊二级结构是UGA解读为硒代半胱氨酸所必需的。  相似文献   

20.
The nucleotide sequence of the selA gene from Escherichia coli whose product is involved in the conversion of seryl-tRNA(Sec UCA) into selenocysteyl-tRNA(Sec UCA) was determined. selA codes for a polypeptide of a calculated Mr of 50,667; a protein of appropriate size was synthesized in vivo in a T7 promoter/polymerase system. An assay for SELA activity was devised which is based on the seryl-tRNA(Sec UCA)-dependent incorporation of [75Se] selenium into acid-insoluble material. It was used to follow SELA purification from cells that overproduced the protein from a phage T7 promoter plasmid. Purified native SELA protein migrates in gel filtration experiments with a native Mr of about 600,000. SELA contains 1 mol of bound pyridoxal 5-phosphate/mol of 50-kDa subunit. Evidence is presented that the overall conversion of seryl-tRNA(Sec UCA) to selenocysteyl-tRNA(Sec UCA) occurs at the SELA protein. SELA, therefore, has the function of a selenocysteine synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号