共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xin Huang Lu Ding Rui Pan Peng-Fei Ma Pan-Pan Cheng Chun-Hui Zhang Yu-Ting Shen Lin Xu Yu Liu Xiao-Qin He Zhong-Quan Qi Hai-Long Wang 《Histochemistry and cell biology》2013,139(4):525-534
WASP homolog associated with actin, membranes and microtubules (WHAMM) is a newly discovered nucleation-promoting factor that links actin and microtubule cytoskeleton and regulates transport from the endoplasmic reticulum to the Golgi apparatus. However, knowledge of WHAMM is limited to interphase somatic cells. In this study, we examined its localization and function in mouse oocytes during meiosis. Immunostaining showed that in the germinal vesicle (GV) stage, there was no WHAMM signal; after meiosis resumption, WHAMM was associated with the spindle at prometaphase I (Pro MI), metaphase I (MI), telophase I (TI) and metaphase II (MII) stages. Nocodazole and taxol treatments showed that WHAMM was localized around the MI spindle. Depletion of WHAMM by microinjection of specific short interfering (si)RNA into the oocyte cytoplasm resulted in failure of spindle migration, disruption of asymmetric cytokinesis and a decrease in the first polar body extrusion rate during meiotic maturation. Moreover, actin cap formation was also disrupted after WHAMM depletion, confirming the failure of spindle migration. Taken together, our data suggest that WHAMM is required for peripheral spindle migration and asymmetric cytokinesis during mouse oocyte maturation. 相似文献
3.
Xiong B Li S Ai JS Yin S Ouyang YC Sun SC Chen DY Sun QY 《Biology of reproduction》2008,79(4):718-726
BRCA1 as a tumor suppressor has been widely investigated in mitosis, but its functions in meiosis are unclear. In the present study, we examined the expression, localization, and function of BRCA1 during mouse oocyte meiotic maturation. We found that expression level of BRCA1 was increased progressively from germinal vesicle to metaphase I stage, and then remained stable until metaphase II stage. Immunofluorescent analysis showed that BRCA1 was localized to the spindle poles at metaphase I and metaphase II stages, colocalizing with centrosomal protein gamma-tubulin. Taxol treatment resulted in the presence of BRCA1 onto the spindle microtubule fibers, whereas nocodazole treatment induced the localization of BRCA1 onto the chromosomes. Depletion of BRCA1 by both antibody injection and siRNA injection caused severely impaired spindles and misaligned chromosomes. Furthermore, BRCA1-depleted oocytes could not arrest at the metaphase I in the presence of low-dose nocodazole, suggesting that the spindle checkpoint is defective. Also, in BRCA1-depleted oocytes, gamma-tubulin dissociated from spindle poles and MAD2L1 failed to rebind to the kinetochores when exposed to nocodazole at metaphase I stage. Collectively, these data indicate that BRCA1 regulates not only meiotic spindle assembly, but also spindle assembly checkpoint, implying a link between BRCA1 deficiency and aneuploid embryos. 相似文献
4.
Janet E. Holt Simon I. R. Lane Phoebe Jennings Irene García-Higuera Sergio Moreno Keith T. Jones 《Molecular biology of the cell》2012,23(20):3970-3981
FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ∼1 h, and this is due to an earlier onset of spindle assembly checkpoint (SAC) satisfaction and APCCDC20 activity. However, loss of FZR1 did not compromise SAC functionality; instead, earlier SAC satisfaction was achieved because the bipolar meiotic spindle was assembled more quickly in the absence of FZR1. This novel regulation of spindle assembly by FZR1 led to premature bivalent attachment to microtubules and loss of kinetochore-bound MAD2. Bivalents, however, were observed to congress poorly, leading to nondisjunction rates of 25%. We conclude that in mouse oocytes FZR1 controls the timing of assembly of the bipolar spindle and in so doing the timing of SAC satisfaction and APCCDC20 activity. This study implicates FZR1 as a major regulator of prometaphase whose activity helps to prevent chromosome nondisjunction. 相似文献
5.
《Cell cycle (Georgetown, Tex.)》2013,12(3):524-531
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI, at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD), and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed, and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor. 相似文献
6.
Yadushyla Narasimhachar Daniel R Webster David L Gard Martine Coué 《Cell cycle (Georgetown, Tex.)》2012,11(3):524-531
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD) and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects, including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.Key words: Cdc6, spindle assembly, Xenopus, oocytes, pre-RC proteins 相似文献
7.
The mouse secondary oocyte is polarized at the ultrastructural and molecular level, but very little is known about mechanisms involved in the establishment of this polarity. We showed that the LKB1 kinase, a mouse homologue of Caenorhabditis elegans PAR4 protein is asymmetrically localized to the animal pole of the mouse oocyte and during oocyte maturation associates with the microtubules of metaphase I and metaphase II meiotic spindles. Therefore, we suggest that LKB1/PAR4 protein, may participate in the polarization of the oocyte and in the regulation of the asymmetry of meiotic divisions during mouse oogenesis. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(20):3384-3395
Astrin has been described as a microtubule and kinetochore protein required for the maintenance of sister chromatid cohesion and centrosome integrity in human mitosis. However, its role in mammalian oocyte meiosis is unclear. In this study, we find that Astrin is mainly associated with the meiotic spindle microtubules and concentrated on spindle poles at metaphase I and metaphase II stages. Taxol treatment and immunoprecipitation show that Astrin may interact with the centrosomal proteins Aurora-A or Plk1 to regulate microtubule organization and spindle pole integrity. Loss-of-function of Astrin by RNAi and overexpression of Tof the coiled-coil domain results in spindle disorganization, chromosome misalignment and meiosis progression arrestT. Thr24, Ser66 or Ser447 may be the potential phosphorylated sites of Astrin by Plk1, as site-directed mutation of these sites causes oocyte meiotic arrest at HTmetaphaseTH I with highly disordered spindles and disorganized chromosomes, although mutant Astrin localizes to the spindle apparatus. Taken together, these data strongly suggest that Astrin is critical for meiotic spindle assembly and maturation in mouse oocytes. 相似文献
9.
10.
Leader B Lim H Carabatsos MJ Harrington A Ecsedy J Pellman D Maas R Leder P 《Nature cell biology》2002,4(12):921-928
Successful reproduction in mammals requires a competent egg, which is formed during meiosis through two assymetrical cell divisions. Here, we show that a recently identified formin homology (FH) gene, formin-2 (Fmn2), is a maternal-effect gene that is expressed in oocytes and is required for progression through metaphase of meiosis I. Fmn2(-/-) oocytes cannot correctly position the metaphase spindle during meiosis I and form the first polar body. We demonstrate that Fmn2 is required for microtubule-independent chromatin positioning during metaphase I. Fertilization of Fmn2(-/-) oocytes results in polyploid embryo formation, recurrent pregnancy loss and sub-fertility in Fmn2(-/-) females. Injection of Fmn2 mRNA into Fmn2-deficient oocytes rescues the metaphase I block. Given that errors in meiotic maturation result in severe birth defects and are the most common cause of chromosomal aneuploidy and pregnancy loss in humans, studies of Fmn2 may provide a better understanding of infertility and birth defects. 相似文献
11.
Taxol-induced meiotic maturation delay, spindle defects, and aneuploidy in mouse oocytes and zygotes
Mailhes JB Carabatsos MJ Young D London SN Bell M Albertini DF 《Mutation research》1999,423(1-2):79-90
To increase our understanding about the potential risks of chemically-induced aneuploidy, more information about the various mechanisms of aneuploidy induction is needed, particularly in germ cells. Most chemicals that induce aneuploidy inhibit microtubule polymerization. However, taxol alters microtubule dynamics by enhancing polymerization and stabilizing the polymer fraction. We tested the hypothesis that taxol induces meiotic delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Super-ovulated ICR mice received 0 (control), 2.5, 5.0, and 7.5 mg/kg taxol intraperitoneally immediately after HCG. Females were paired (1:1) with males for 17 h after taxol treatment. Mated females were given colchicine 25 h after taxol and their one-cell zygotes were collected 16 h later. Ovulated oocytes from non-mated females were collected 17 h after taxol. Chromosomes were C-banded for cytogenetic analyses. Oocytes were also collected from another group of similarly treated females for in situ chromatin and microtubule analyses. Taxol significantly (p<0.01) enhanced the proportion of oocytes exhibiting parthenogenetic activation, chromosomes displaced from the meiotic spindle, and sister-chromatid separation. Moreover, 7.5 mg/kg taxol significantly (p<0.01) increased the proportions of metaphase I and diploid oocytes and polyploid zygotes. A significant (p<0.01) dose response for taxol-induced hyperploidy in oocytes and zygotes was found. These results support the hypothesis that taxol-induced meiotic delay and spindle defects contribute to aneuploid mouse oocytes and zygotes. 相似文献
12.
13.
Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes
Mammalian meiotic divisions are asymmetrical and generate a large oocyte and two small polar bodies. This asymmetry results from the anchoring of the meiotic spindle to the oocyte cortex and subsequent cortical reorganization, but the mechanisms involved are poorly understood. We investigated the role of Rac in oocyte meiosis by using a fluorescent reporter for Rac-GTP. We find that Rac-GTP is polarized in the cortex overlying the meiotic spindle. Polarization of Rac activation occurs during spindle migration and is promoted by the proximity of chromatin to the cortex. Inhibition of Rac during oocyte maturation caused a permanent block at prometaphase I and spindle elongation. In metaphase II-arrested oocytes, Rac inhibition caused the spindle to detach from the cortex and prevented polar body emission after activation. These results demonstrate that Rac-GTP plays a major role in oocyte meiosis, via the regulation of spindle stability and anchoring to the cortex. 相似文献
14.
Pyruvate utilization by mouse oocytes is influenced by meiotic status and the cumulus oophorus 总被引:4,自引:0,他引:4
In this study, the effects of meiotic status on the energy substrate dynamics of mouse oocyte-cumulus cell complexes (OCCs) and denuded oocytes (DOs) have been examined. In the first series of experiments, OCCs from PMSG-primed, immature mice were cultured in minimum essential medium in 8-microl microdrops under a variety of conditions, and the medium and oocytes were sampled for pyruvate and glucose concentration and for meiotic status. Oocytes in control medium underwent germinal vesicle breakdown within 3 hr and the OCCs displayed a time-dependent increase in pyruvate consumption, but the glucose concentration changed very little. Treatment with IBMX or dbcAMP, which maintained complete meiotic arrest, suppressed pyruvate consumption, but slightly more glucose was consumed than in controls. Hypoxanthine (HX) allowed up to 10% of the oocytes to resume maturation, and pyruvate and glucose consumption resembled that of control OCCs. FSH added to HX-containing medium stimulated significant glucose consumption and pyruvate production. In general, a reciprocal relationship was observed between glucose and pyruvate consumption. When the energy substrate dynamics were compared with meiotic status of the oocytes, pyruvate consumption was associated with the maturation process. Although HX maintained oocytes in the germinal vesicle stage, the meiotic arrest was "leaky," allowing increased pyruvate consumption. Additional experiments showed that DOs at either the prophase I or metaphase II stages consumed less pyruvate than oocytes actively engaged in meiotic maturation. DOs oxidized significantly more pyruvate than OCCs, and glycolytic metabolism of glucose lowered the oxidation rate in OCCs. Furthermore, while 5-6.2 times more pyruvate was consumed by OCCs than by DOs in the absence of glucose, oxidation did not mediate the meiosis-inducing effect of pyruvate, since less of this substrate was oxidized by OCCs than by DOs. We conclude that meiotically active oocytes have a greater requirement for pyruvate than prophase I- or metaphase II-arrested oocytes and that meiotic status can influence the metabolism not only of oocytes, but also of the OCCs. 相似文献
15.
Asymmetric positioning and organization of the meiotic spindle of mouse oocytes requires CDC42 function 总被引:1,自引:0,他引:1
The mature mammalian oocyte is highly polarized because asymmetrical spindle migration to the oocyte cortex ensures extrusion of small polar bodies in the two meiotic divisions, essential for generation of the large egg. Actin filaments, myosin motors, and formin-2, but not microtubules, are required for spindle migration. Here, we show that Cdc42, a key regulator of cytoskeleton and cell polarity in other systems , is essential for meiotic maturation and oocyte asymmetry. Disrupting CDC42 function by ectopic expression of its GTPase-defective mutants causes both halves of the first meiotic spindle to extend symmetrically toward opposing cortical regions and prevents an asymmetrical division. The elongated spindle has numerous astral-like microtubules, and aPKCzeta, normally associated with the spindle poles, is distributed along its length. Dynactin is displaced from kinetochores, consistently homologous chromosomes do not segregate, and polar body extrusion is prevented. Perturbing the function of aPKCzeta also causes elongation of the meiotic spindle but still permits spindle migration and polar body extrusion. Thus, at least two pathways appear to be downstream of CDC42: one affecting the actin cytoskeleton and required for migration of the meiotic spindle, and a second affecting the spindle microtubules in which aPKCzeta plays a role. 相似文献
16.
In this study we have examined the meiosis-inducing influence of adenosine analogs in mouse oocytes. When a varied group of nucleosides and nucleotides were tested on overnight cultures of hypoxanthine-arrested, cumulus cell-enclosed oocytes (CEO), halogenated adenosine nucleosides, but not native adenosine, exhibited a significant meiosis-inducing capability. When tested under a variety of conditions, meiotic induction by 8-bromo-adenosine (8-Br-Ado) and a second adenosine analog, methylmercaptopurine riboside (MMPR), was especially potent in denuded oocytes (DO) compared to CEO and was not dependent on the type of inhibitor chosen to maintain meiotic arrest. Germinal vesicle breakdown (GVB) was stimulated with rapid kinetics and was preceded by an increase in AMP-activated protein kinase (AMPK) activity. Moreover, compound C, an inhibitor of AMPK, blocked the meiosis-inducing activities of both adenosine analogs. When tested for an effect on meiotic progression to metaphase II (MII) in spontaneously maturing CEO, 8-Br-Ado and the AMPK activator, 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR), increased the percentage of MII-stage oocytes, but MMPR decreased this number. Adenosine and inhibitors of de novo purine synthesis had no effect on the completion of maturation, while compound C suppressed this process. These results support the proposition that oocyte AMPK mediates the positive influence of AICAR and 8-Br-Ado on both the initiation and completion of meiotic maturation. The role of AMPK in MMPR action is less clear. 相似文献
17.
Distinctions in meiotic spindle structure and assembly during in vitro and in vivo maturation of mouse oocytes 总被引:11,自引:0,他引:11
To better understand the differences in cytoskeletal organization between in vivo (IVO) and in vitro (IVM) matured oocytes, we analyzed remodeling of the centrosome-microtubule complex in IVO and IVM mouse oocytes. Fluorescence imaging revealed dramatic differences in meiotic spindle assembly and organization between these two populations. Metaphase spindles at both meiosis I (M-I) and meiosis II (M-II) in IVO oocytes were compact, displayed focused spindle poles with distinct gamma-tubulin foci, and were composed of acetylated microtubules. In contrast, IVM oocytes exhibited barrel-shaped spindles with fewer acetylated microtubules and gamma-tubulin diffusely distributed throughout the spindle proper. With respect to meiotic progression, IVO oocytes were more synchronous in the rate and extent of anaphase to telophase of M-I and first polar body emission than were IVM counterparts. Furthermore, IVO oocytes showed a twofold increase in cytoplasmic microtubule organizing centers (MTOCs), and constitutive MTOC proteins (gamma-tubulin and pericentrin) were excluded from the first polar body. Inclusion of MTOC constitutive proteins in the polar body and diminished number of cytoplasmic MTOCs was observed in IVM oocytes. These findings were corroborated in IVO oocytes obtained from naturally ovulated and spontaneously cycling mice and highlight a fundamental distinction in the spatial and temporal regulation of microtubule dynamics between IVO and IVM oocytes 相似文献
18.
19.
《Cell cycle (Georgetown, Tex.)》2013,12(11):1853-1860
During oocyte meiotic maturation, meiotic spindles form in the central cytoplasm and then migrate to the cortex to extrude a small polar body, forming a highly polarized cell through a process involving actin and actin-related molecules. The mechanisms underlying oocyte polarization are still unclear. The Arp2/3 complex regulates oocyte polarization but it is not known whether the WASP family of proteins, a known regulator of the Arp2/3 complex, is involved in this context. In the present study, the role of WASP family member WAVE2 in mouse oocyte asymmetric division was investigated. (1) WAVE2 mRNA and protein were detected during mouse oocyte meiosis. (2) siRNA-mediated and antibody-mediated disruption of WAVE2 resulted in the failure of chromosome congression, spindle formation, spindle positioning and polar body extrusion. (3) WAVE2 regulated actin-driven chromosome migration since chromosomes were arrested in the central cytoplasm by WAVE2 RNAi in the absence of microtubules. (4) Localization of γ-tubulin and MAPK was disrupted after RNAi, confirming the effect of WAVE2 on spindle formation. (5) Actin cap and cortical granule-free domain (CGFD) formation was also disrupted, further confirming the failure of oocyte polarization. Our data suggest that WAVE2 regulates oocyte polarization by regulating meiotic spindle, peripheral positioning, probably via an actin-mediated pathway, and is involved in polar body emission during mouse oocyte meiotic maturation. 相似文献
20.
Chun-Xiang Zhou Li-Ya Shi Rui-Chao Li Ya-Hong Liu Bo-Qun Xu Jin-Wei Liu 《Cell cycle (Georgetown, Tex.)》2017,16(9):852-860
Meiotic failure in oocytes is the major determinant of human zygote-originated reproductive diseases, the successful accomplishment of meiosis largely relay on the normal functions of many female fertility factors. Elmod2 is a member of the Elmod family with the strongest GAP (GTPase-activating protein) activity; although it was identified as a possible maternal protein, its actual physiologic role in mammalian oocytes has not been elucidated. Herein we reported that among Elmod family proteins, Elmod2 is the most abundant in mouse oocytes, and that inhibition of Elmod2 by specific siRNA caused severe meiotic delay and abnormal chromosomal segregation during anaphase. Elmod2 knockdown also significantly decreased the rate of oocyte maturation (to MII, with first polar body extrusion), and significantly greater numbers of Elmod2-knockdown MII oocytes were aneuploid. Correspondingly, Elmod2 knockdown dramatically decreased fertilization rate. To investigate the mechanism(s) involved, we found that Elmod2 knockdown caused significantly more abnormal mitochondrial aggregation and diminished cellular ATP levels; and we also found that Elmod2 co-localized and interacted with Arl2, a GTPase that is known to maintain mitochondrial dynamics and ATP levels in oocytes. In summary, we found that Elmod2 is the GAP essential to meiosis progression of mouse oocytes, most likely by regulating mitochondrial dynamics. 相似文献