首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中华真地鳖的断足再生   总被引:2,自引:0,他引:2  
报道了中华真地鳖Eupolyphaga sinensis Walker的断足再生特征。研究结果表明,不同虫龄期的若虫都有断足再生能力;足的不同部位断足后均能再生;断掉不同数量的足后,只要能成活均可再生。断足再生后,继续断掉再生足的原位或其他部位也可以再生。再生足的跗节均比正常的少一节,具有再生不完整性。断足后,只要经1~2次蜕皮,均可再生。断掉一对足的腿节后,再生足出现大小不一的现象,小的一般发育不全,断足数量多容易出现再生足发育不全。再生足比正常足要小,但生长速度要快,断掉足的腿节或跗节后的再生足经过2次蜕皮后基本可恢复到正常足大小。  相似文献   

2.
Effect of prednisolone on isolated preparations of trachea of normal rats and rats with fibrosing alveolitis was studied. Prednisolone at a concentration of 0.4 microg/l decreased responses of smooth muscle on stimulation of preganglionar nerve fibers at trachea areas with intramural ganglia in rats with acute alveolitis by 48%, while in normal rats--by 19% of control. In trachea preparations without ganglia, prednisolone at a dose of 10 microg/l decreased responses of muscle to the nerve fiber stimulation by 21.3%. The higher prednisolone doses were less efficient: 0.1-10 microg/l glucocorticoid practically did not affect the smooth muscle responses produced by stimulation of muscle cells. In rats with fibrosing alveolitis, 10 microg/l prednisolone restored the smooth muscle responses to control values in preparations of trachea with intramural ganglia. After the prednisolone treatment, amplitude of the rat trachea muscle contraction in response to the nerve fiber electric stimulation did not differ statistically significantly from control and 0.1-10 microg/l prednisolone did not change the response value. The conclusion is made that prednisolone affected the diseased rats more efficiently than the healthy animals. The character of the glucocorticoid effect depends on the presence of intramural ganglia in the trachea wall.  相似文献   

3.
The metathoracic extensor tibiae muscle of the cricket Teleogryllus oceanicus is innervated by two excitatory axons; one of which leaves the metathoracic ganglion through nerve 5, the other through nerve 3. Axons in nerve 5 frequently regenerate to reinnervate the extensor tibiae if the nerve is sectioned in a late nymphal stage; functional reinnervation is rare if the nerve is sectioned in young adults. The muscle may become reinnervated by several axons regenerating through nerve 5, and individual muscle fibres may receive inputs from two regenerated axons. Axons regrowing through nerve 5 to a partially-denervated extensor tibiae preferentially innervate fibres in the central portion of the muscle, which is the normal innervation field of nerve 5. If the muscle is totally denervated by transection of both nerve 5 and nerve 3b, reinnervation is less specific and fibres throughout the muscle may be reinnervated by axons in either nerve. Reinnervation by regenerating axons is progressive. The proportion of muscles which are functionally reinnervated by regenerated axons increases with survival time as does the proportion of fibres within a muscle with reinnervation. The amplitude of excitatory junctional potentials and of muscle contraction evoked by regenerated axons both increase with survival time.  相似文献   

4.
Effect of prednisolone on isolated preparations of trachea of normal rats and rats with fibrosing alveolitis was studied. Prednisolone at a concentration of 0.4 μg/l decreased responses of smooth muscle on stimulation of preganglionic nerve fibers at trachea areas with intramural ganglia in rats with acute alveolitis by 48%, while in normal rats—by 19% of control. In trachea preparations without ganglia, prednisolone at a dose of 10 μg/l decreased responses of muscle to the nerve fiber stimulation by 21.3%. The higher prednisolone doses were less efficient: 0.1–10 μg/l glucocorticoid practically did not affect the smooth muscle responses produced by stimulation of muscle cells. In rats with fibrosing alveolitis, 10 μg/l prednisolone restored the smooth muscle responses to control values in preparations of trachea with intramural ganglia. After the prednisolone treatment, amplitude of the rat trachea muscle contraction in response to the nerve fiber electric stimulation did not differ statistically significantly from control and 0.1–10 μg/l prednisolone did not change the response value. The conclusion is made that prednisolone affected the diseased rats more efficiently than the healthy animals. The character of the glucocorticoid effect depends on the presence of intramural ganglia in the trachea wall.  相似文献   

5.
We studied the mechanisms underlying support of body load in posture and walking in serially homologous legs of cockroaches. Activities of the trochanteral extensor muscle in the front or middle legs were recorded neurographically while animals were videotaped. Body load was increased via magnets attached to the thorax and varied through a coil below the substrate. In posture, tonic firing of the slow trochanteral extensor motoneuron (Ds) in each leg was strongly modulated by changing body load. Rapid load increases produced decreases in body height and sharp increments in extensor firing. The peak of extensor activity more closely approximated the maximum velocity of body displacement than the body position. In walking, extensor bursts in front and middle legs were initiated during swing and continued into the stance phase. Moderate tonic increases in body load elicited similar, specific, phase dependent changes in both legs: extensor firing was not altered in swing but was higher after foot placement in stance. These motor adjustments to load are not anticipatory but apparently depend upon sensory feedback. These data are consistent with previous findings in the hind legs and support the idea that body load is countered by common motor mechanisms in serially homologous legs.  相似文献   

6.
Miniature endplate potentials (MEPPs) are regarded as the expression of release of a single quantum of acetylcholine by motor nerve endings in the muscle. Mepp frequency is dependent on the presynaptic mechanism, but MEPP amplitudes and time courses are the result of the characteristics of pre- and postsynaptic structures and of the interaction between them. After post-traumatic reinnervation of skeletal muscles, MEPP frequency increases, reaching slowly normal values. Two groups of male, Sprague Dawley rats were used: in the first group left sciatic nerve was crushed and nerve fibres were allowed to regenerate, whereas the others were regarded as controls. MEPPs were intracellularly recorded in end plates of normal and reinnervated left extensor digitorum longus muscle. MEPPs were sampled and recorded on a personal computer, and, subsequently, amplitude, rise time and half decay time were computed. At early stage after reinnervation, MEPPs showed rise times and decay times longer than normal. Afterwards, we did not find differences between mepp time courses by normal and reinnervated end plates. The possible relationships between the results and changes in acetylcholine receptor number and type, and in acetylcholinesterase activity occurring during denervation and reinnervation are discussed.  相似文献   

7.
The innervation pattern of skeletal muscles was studied in the normal and regenerating tail of Notophthalmus viridescens. Silver staining for nerve endings and histochemical localization of acetylcholinesterase (AChE) were used for light microscopy. In In normal musculature, AChE positive reactions were localized at the ends of the muscle fibers where they are anchored on connective tissue septa by myotendinous junctions. At this level, silver staining shows nerve terminals forming endplates. During regeneration, positive reactions for AChE appear de novo as dense plates localized at the ends of the newly formed myotubes. The mechanisms involved in the localization of AChE on this surface seem to operate before previous local contacts by nerve terminals. From the ultrastructural data and immunohistochemical results with anti-laminin antibody, these observations suggest that regenerating muscle fibers determine a region of post-synaptic specialization in close relation with the organization of myotendinous regions and basement membrane formation. Nerve-muscle contacts appear at these levels at stage IV (15-20 days after amputation) in the stump and in the rostral part of the regenerate (transition zone). These nerve terminals are provided by the disorganized peripheral nervous system of the injured segment. In the regenerate a similar pattern of AChE reaction can be seen in every myotube, differentiating according to a rostro-caudal gradient. Innervation at the ends of the muscle fibers is in spatiotemporal relation with the exists of the ventral roots from the regenerating nerve cord as the regenerate continues to grow in length.  相似文献   

8.
The torque generated by a rotating joint comprises the useful force exerted by the joint on the external environment, and both the magnitude and distribution of torque through the step cycle during walking are important variables in understanding the mechanics of walking. The mechanics of the American lobster (Homarus americanus) and snow crab (Chionoecetes opilio) during walking were modelled to examine the relative roles of flexor versus extensor apodeme-muscle complexes, investigate which legs of these decapods likely contribute the greatest to locomotion, determine scaling effects of torque generation, and assess the relative roles of various model variables on torque production. Force generated along the length of the apodeme by the muscle was modelled based on apodeme surface area, muscle stress, and muscle fibre pinnation angle. Torque was then calculated from this estimated force and the corresponding moment arm. The flexor apodeme-muscle complex is calculated to generate consistently greater forces than the extensor, and generally this results in flexor torque being larger than extensor, though the snow crab does illustrate the opposite in two of its legs. This greater torque generation in flexion suggests that, in addition to the pushing of the trailing legs, the pulling action of the leading legs may play a significant role, at least during lateral walking. Leg 4 of both species appears to generate greater torques and thus provide the greatest forces for locomotion. Torque generation as a function of body size shows a second order response due to the increase in apodeme surface area. The pinnation angle of the muscle fibre is found to be insignificant in force generation, apodeme surface area (representing muscle cross sectional area) likely plays the most influential role in total force production, and moment arm controls the distribution of this force through the step cycle. Muscle stress remain a largely unknown quantity however, and may significantly affect both magnitude and distribution through step cycle of forces, and thus torque. Despite the uncertainty associated with the muscle stress parameter, the modelled results fit well with previously published force measurements.  相似文献   

9.
Receptors monitoring muscle force innervate the opener muscle apodeme in the walking legs of the blue crab, Callinectes sapidus. Biocytin backfills reveal 9–15 bipolar neurons with somata as large as 60 μm positioned at the distal end of the apodeme. Sensory endings insert into the apodeme and are in series with the opener muscle. The axons of these neurons form the opener apodeme sensory nerve that merges with the most distal branch of the opener motor nerve. Recordings reveal that the receptors are not spontaneously active nor do they respond to passive muscle stretch. Isometric muscle contraction evoked by stimulating the opener excitor motor neuron is the adequate stimulus for receptor firing. Most significant is the finding that during contraction, over a wide range of forces, the firing rate of individual receptors closely parallels the rate of change of isometric force. The peak instantaneous frequency typically occurs at the force derivative maximum, but not at maximum force development. Thus, receptors of the opener apodeme sensory nerve more closely monitor changes in isometric force rather than the total force achieved. Accepted: 20 September 1996  相似文献   

10.
Summary The sensory innervation pattern is described for the femur of the middle and the hind legs ofCarausius morosus. — In one of the nerves (F121) extracellular recordings show a unit which mirrors the tension of the flexor tibiae muscle (tension receptor). The tension receptor increases the firing rate of the slow extensor tibiae motoneuron. It measures the tension of one or more muscle fibres of the anterior side near the distal end of the muscle. The anatomical basis of this receptor is uncertain. — Another receptor was found on the ventral side of the distal end of the apodeme of the extensor tibiae muscle (apodeme receptor). Recordings from this receptor could not be obtained inCarausius. But inExtatosoma tiaratum it responded to stretching of the nerve. In the natural position it shows a minimum of excitation in the 90°-position of the femur-tibia-joint and an increase in firing rate for both flexion and extension. — Tactile hairs react phasically and have no special sensitivity for one direction. Two receptors at the dorsal side of the femur-tibia-joint (RDAL and RDPL), which are situated in the same position as inSchistocerca hind legs, react phasically to extension movements and fire tonically in the most extended position of the joint. — The influence of these receptors on the position of the femur-tibia-joint is only weak.Supported by Deutsche Forschungsgemeinschaft  相似文献   

11.
Sensory or motor "baby-sitting" has been proposed as a clinical strategy to preserve muscle integrity if motion-specific axons must regenerate over a long distance to reach denervated target muscles. Denervated muscles are innervated temporarily by using axons from nearby sensory or motor nerves. After motion specific motor axons have reached the target, the baby-sitter nerve is severed and motion-specific axons are directed to the target. Although this strategy minimizes denervation time, the requisite second episode of denervation and reinnervation might be deleterious to muscle contractile function. This study was designed to test the hypothesis that two sequential episodes of skeletal muscle denervation and reinnervation result in greater force and power deficits than a single peripheral nerve injury and repair. Adult Lewis rats underwent either transection and epineurial repair or sham exposure of the left peroneal nerve. After a 4-month recovery period, the contractile properties of the extensor digitorum longus muscle of the sham exposure group (control, n = 9) and one of the nerve division and repair groups (repair group 1, n = 9) were evaluated with measurements of the maximum tetanic isometric force, peak power, and maximal sustained power. A third group of rats underwent a second cycle of nerve division and repair (repair group 2, n = 9) at this same time point. Four months postoperatively, contractile properties of the extensor digitorum longus muscles were evaluated. Maximum tetanic isometric force and peak power were significantly reduced in repair group 2 rats as compared with repair group 1 and control rats. Maximal sustained power was not significantly different between the groups. These data support our working hypothesis that skeletal muscle contractile function is adversely affected by two cycles of denervation and reinnervation as compared with a single episode of nerve division and repair.  相似文献   

12.
A Study of the Reinnervation of Fast and Slow Mammalian Muscles   总被引:9,自引:0,他引:9       下载免费PDF全文
Miniature end plate potential (mepp) frequency in innervated extensor muscle is significantly higher than in soleus muscle. 9 days after nerve crush mepps of low amplitude and prolonged duration reappeared at a frequency of 2% of control and were similar to normal muscles after 35 days. Membrane potential began to increase 9–10 days after nerve crush and at 30 days was similar to controls. The region most sensitive to ACh in denervated and reinnervated muscles was the end plate. Caffeine (20 mM, 23°C) induced contracture in innervated soleus but not in extensor muscles. After denervation the extensor became sensitive to caffeine while the soleus muscles decreased in sensitivity to the drug; 4–5 days after reinnervation the effect of caffeine on these muscles was similar to control. The events during reinnervation are: (a) reappearance of mepps at the same time as end plate potential and muscle twitch; (b) partial restoration of the membrane potential; (c) return of caffeine-induced contracture to normal levels in the soleus and its absence in the extensor muscles; (d) return of membrane resistance to normal values in both muscles at about 25 days; and (e) return of ACh-sensitivity to control levels at about 30 days in both muscles. Although these results suggest that the membrane potential and sarcoplasmic reticulum are under neural influence, it remains to be established whether or not separate neurotrophic factors are involved.  相似文献   

13.
Action potentials (APs) were recorded from the extrajunctional membrane of surface fibers of the fast-twitch extensor digitorum longus (extensor) and the slow-twitch soleus muscles of adult rats. APs of the extensor muscle had a significantly faster rate of rise and fall, as well as a shorter duration, than those of the soleus. In addition, the overshoot of APs and the resting membrane potential was greater for the extensor. Whereas the soleus produced only one AP regardless of the stimulus duration, the number of extensor responses was directly proportional to the stimulus duration. This repetitive activity was greatly reduced by a concentration of tetrodotoxin (TTX) as low as 5 X 10(11) g/ml. Within 8 d after crush of the nerves to these two muscles, all differences in AP properties disappeared and both muscles became partially resistant to TTX. Reinnervation brought about a redifferentiation so that differences in AP were again significant at 22 d after nerve crush. However, the rate of rise of extensor APs did not attain normal values even as late as 60 d after nerve crush. APs were found to be the same for extensor and soleus muscles from 12-d-old rats. At 18 d after birth, rate of rise was equivalent to that of adult muscle for the soleus although 50--60 d were required before this parameter was fully mature for the extensor. Nevertheless, APs of the extensor and soleus were clearly differentiated within 25 d after birth. Differences in fast and slow muscle APs are discussed with regard to differences in ion gradients and sarcolemmal conductance.  相似文献   

14.
三种华枝断肢再生的研究   总被引:4,自引:1,他引:3  
目(竹节虫目)的昆虫具有很强的断肢再生能力。该文通过对华枝属(Sinophasma spp)三种昆虫的实验,表明其再生能力与断肢发生的时间及数量有关。断肢1只或2只的1~4龄虫体发育至成虫期或至若虫末龄时,其再生足的长度与相应的正常足长度相近。若在5龄初时断肢1~2只,也具有再生能力,但至成虫期其再生足的长度则短于相对应的正常足。若在6龄及成虫时断肢,则无再生能力(若6龄时出现断肢再生,则若虫期多为7龄)。实验结果还表明,若断肢为3只或3只以上,则虫体不能存活,且多在断肢后2~3 d内死亡。观察中尚发现,再生足生长速度明显高于正常足。而且,断肢的龄期越高,再生足生长速度越快。再生足的伸长生长与正常足一样,均出现于虫体蜕皮时。  相似文献   

15.
We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femur-tibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints. Accepted: 24 May 1997  相似文献   

16.
Summary The anatomy of the complex tibial organs in the pro-, meso- and metathoracic legs of adults and larvae of the bushcricketEphippiger ephippiger is described comparatively. The subgenual organ and the intermediate organ are differentiated in the same way in legs I, II and III; the anatomy of the crista acustica and the tracheal morphology are significantly different. The final number of scolopidia in the tibial organ of each leg is present at the time of hatching. In the subgenual organ, the number of scolopidia is the same in all legs; in the intermediate organ, and especially in the crista acustica, the number of scolopidia decreases from leg I to legs II and III. In the first larval instar, the morphology of the tibia, the course of the trachea and the anatomy of accessory structures are developed in the same way in each leg. The specific differentiations forming the auditory receptor organ in leg I, such as the acoustic trachea, the tympana and tympanal cavities, develop step by step in subsequent instars. The auditory threshold recorded from the tympanal nerve in the prothoracic leg of adults is remarkably lower than in the meso- and metathoracic legs. Morphometrical analyses of structures that are suggested to play a role in stimulus transduction on scolopidia of the crista acustica reveal significant differences in the three legs.  相似文献   

17.
The superficial flexor muscles of the crayfish are innervated in a position-dependent connectivity pattern, which can be reestablished when the nerve to the muscle is cut. This article deals with the regeneration of the largest excitor motoneuron under three different target scenarios: (1) a normal target with all the muscle fibers present, (2) a reduced target lacking the medial or the lateral muscle fiber population, and (3) when the nerve enters the target in the middle of the muscle field. In scenario 1 the neuron is able to regenerate the normal connectivity pattern within 10 weeks after surgery: all the lateral fibers become innervated, with a linear decline in the probability of connections over the medial fibers. The medial fibers become transiently hyperinnervated before the normal pattern of connections is established. In scenario 2 the normal pattern of connections is established only when the lateral fibers were present; with only medial cells as a target, the transient hyperinnervation stage is stable and no decline in connections was observed. Analysis of regenerated junction potential sizes during the stable hyperinnervation stage show abnormal patterns, suggesting that some aspects of the regeneration program of this neuron can be affected when signals from its prime target cells are missing. In scenario 3 growth begins in both directions until the entire muscle becomes innervated. The normal pattern of connectivity finally emerges after continued lateral growth and diminished medial growth, suggesting that the position of the muscle fibers influences connectivity patterns during the final stages of regeneration.  相似文献   

18.
Metathoracic limb buds have been unilaterally ablated from locust embryos at 25 to 30% of embryonic development and the effect of this operation on the axon morphology of the motorneuron fast extensor tibiae (FETi) observed at later embryonic stages. In control embryos this neuron sends a single axon out the main leg nerve, nerve 5, to the extensor tibiae muscle in the femur. In limb ablated embryos the axon of FETi is found in a wide variety of aberrant peripheral nerve pathways and projects to a wide range of foreign muscles. There is a degree of apparent selectivity, but no rigid hierarchy, in the choice of pathway and muscle made by FETi. A high degree of variability is found between one embryo and another in the extent and pattern of axon branching. The axon of FETi is generally found in pathways that correspond to nerves in control embryos but on occasion grows along novel routes. An anteriorly directed dendritic branch, seldom seen in control FETi neurons, is frequently seen in experimental FETis. These findings are discussed in terms of the rules for specific axon growth in normal development.  相似文献   

19.
Autotomy is a process in grasshoppers whereby one or both hindlimbs can be shed to escape a predator or can be abandoned if damaged. It occurs between the trochanter and the femur (second and third leg segments) and once lost, the legs never regenerate. Autotomy severs branches of the leg nerve (N5) but damages no muscles since none span the autotomy plane. We find, however, that undamaged muscles intrinsic to the thorax of grasshoppers, Barytettix psolus, atrophy to less than 15% of their normal mass after autotomy of a hindlimb. These muscles operate the coxa and trochanter (first and second leg segments) and are innervated by branches of nerves 3 and 4; nerve branches that are not damaged by autotomy. Atrophy is localized to the side and body segment where autotomy occurs. Atrophy is evident 7-10 days after loss of a limb, is complete by about 30 days, and follows a similar time course whether induced in young adult, or sexually mature grasshoppers. During autotomy, leg nerve 5 is served distal to the trochanter, the thoracic muscles lose their normal static and dynamic load, and these muscles are subsequently no longer used to support the weight of the insect during posture and locomotion. Experimental loading and unloading of the affected muscles, and cutting of nerves indicated that it is the severing of leg nerve 5 during autotomy that transneuronally induces muscle atrophy.  相似文献   

20.
Young dystrophic (dy) murine muscle is capable of "spontaneous" regeneration (i.e., regeneration in the absence of external trauma); however, by the time the mice are 8 weeks old, this regeneration ceases. It has been suggested that the cessation of regeneration in dystrophic muscle may be due to exhaustion of the mitotic capability of myosatellite cells during the early stages of the disease. To test this hypothesis, orthotopic transplantation of bupivacaine treated, whole extensor digitorum longus muscles has been performed on 14 to 16-week-old 129 ReJ/++ and 129 ReJ/dydy mice. The grafted dystrophic muscle is able to produce and maintain for 100 days post-transplantation 356 +/- 22 myofibers, a number similar to that found in age-matched dystrophic muscle. The ability of old dystrophic muscle to regenerate subsequent to extreme trauma indicates that the cessation of "spontaneous" regeneration is due to factor(s) other than the exhaustion of mitotic capability of myosatellite cells. Moreover, there is no significant difference in myosatellite cell frequencies between grafted normal and dystrophic muscles (100 days post-transplantation). Myosatellite cell frequencies in grafted muscles are similar to those in age-matched, untraumatized muscles. While grafting of young dystrophic muscle modifies the phenotypic expression of histopathological changes usually associated with murine dystrophy, grafts of older dystrophic muscle show extensive connective-tissue infiltration and significantly fewer myofibers than do grafts of age-matched normal muscle. As early as 14 days post-transplantation, it is possible to distinguish between grafts of old, normal and dystrophic muscles. It is suggested that the connective tissue stroma, present in the dystrophic muscle at the time of transplantation, may survive the grafting procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号