首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. Rogina  S. L. Helfand 《Genetics》1995,141(3):1043-1048
Examination of gene expression and aging in adult Drosophila reveals that the expression of some genes is regulated by age-dependent mechanisms. Genetic mutations, Hyperkinetic(1) and Shaker(5), which are known to shorten life span through an acceleration of the aging process, were used to study the expression of an enhancer trap marked gene. The temporal pattern of expression for such a marked gene shows scaling with respect to life span; it is altered in direct proportion to the life expectancy of the adult animal. This demonstrates that expression of this gene is controlled through mechanisms coupled to physiologic as opposed to chronologic age. Results provide direct evidence for linkage between the regulation of gene expression and life span and establish a model system for the genetic analysis of aging.  相似文献   

2.
3.
4.
In Drosophila melanogaster, the Sir2 gene and four Sir2-like genes have been found to be homologous to yeast SIR2 genes. To examine whether the fly Sir2, CG5216, and two Sir2-like genes, CG5085 and CG6284, affect life span, we suppressed their expression using RNAi. Decreased expression of the Sir2 and Sir2-like genes in all cells caused lethality during development. Suppression of the Sir2 in neurons and ubiquitous silencing of the Sir2-like genes shortened life spans. The effects were severer at 28 degrees C than at 25 degrees C. These results suggest that Sir2-like genes as well as Sir2 are involved in the regulation of life span in Drosophila.  相似文献   

5.
6.
Summary Species of small fish are becoming useful tools for studies on vertebrate development. We have investigated the developing embryo of the Japanese medaka for its application as a transient expression system for the in vivo analysis of gene regulation and function. The temporal and spatial expression patterns of bacterial chloramphenicol acetyltransferase and galactosidase reporter genes injected in supercoiled plasmid form into the cytoplasm of one cell of the two-cell stage embryo was promoter-specific. The transient expression was found to be mosaic within the tissue and organs reflecting the unequal distribution of extrachromosomal foreign DNA and the intensive cell mixing movements that occur in fish embryogenesis. The expression data are consistent with data on DNA fate. Foreign DNA persisted during embryogenesis and was still detectable in some 3- and 9-month-old adult fish; it was found in high molecular weight form as well as in circular plasmid conformations. The DNA was replicated during early and late embryogenesis. Our data indicate that the developing medaka embryo is a powerful in vivo assay system for studies of gene regulation and function.This work contains part of the PhD thesis of C. Winkler  相似文献   

7.
A comparison of the activity of genetic elements from the regulatory region of the Drosophila melanogaster Deformed gene during embryogenesis and adult life reveals important similarities and differences. The 2.7 kb epidermal autoregulatory enhancer (EAE) of the Deformed gene drives expression of a β-galactosidase reporter in unique spatial and temporal patterns in the adult antennae; this pattern is insensitive to temperature effects. The Deformed regulatory region possesses distinct enhancer elements that can direct the expression of a β-galactosidase reporter spatially and temporally. A 120 bp region can reproduce the general features of the larger EAE fragment. The Deformed binding site is essential for temporal and spatial expression of β-galactosidase during embryogenesis but is not required in the adult.  相似文献   

8.
9.
Prolongation of the yeast life span by the v-Ha-RAS oncogene   总被引:1,自引:0,他引:1  
The budding yeast Saccharomyces cerevisiae has a finite life span that is defined by the number of times the cell divides. The patterns of expression of certain genes change in a specific manner during the life span, implying that at least some of the manifestations of the ageing process are subject to gene regulation. It has now been determined that the controlled expression of the RAS oncogene in yeast increases the longevity of this organism, indicating that, conversely, a defined alteration in the activity of a single gene can extend this organism's life span. The results suggest that there is a balance between life-span extension and growth arrest when RAS is expressed. Inasmuch as the homologues of RAS in yeast function to integrate cell metabolism with the cell cycle, these studies raise the possibility that this integrative function may also apply to the co-ordination of successive cell cycles during the life span.  相似文献   

10.
11.
12.
We present a mathematical method for inferring the dynamics of gene expression from time series of reporter protein assays and cell populations. We show that estimating temporal expression dynamics from direct visual inspection of reporter protein data is unreliable when the half-life of the protein is comparable to the time scale of the expression dynamics. Our method is simple and general because it is designed only to reconstruct the pattern of protein synthesis, without assuming any specific regulatory mechanisms. It can be applied to a wide range of cell types, patterns of expression, and reporter systems, and is implemented in publicly available spreadsheets. We show that our method is robust to a several possible types of error, and argue that uncertainty about the decay kinetics of reporter proteins is the limiting factor in reconstructing the temporal pattern of gene expression dynamics from reporter protein assays. With improved estimates of reporter protein decay rates, our approach could allow for detailed reconstruction of gene expression dynamics from commonly used reporter protein systems.  相似文献   

13.
14.
15.
16.
17.
Circadian rhythms are ubiquitous in living organisms, synchronizing life functions at the biochemical, physiological, and behavioral levels. The rhythm-generating mechanisms, collectively known as circadian clocks, are not fully understood in any organism. Research in the fruit fly Drosophila has led to the identification of several clock genes that are involved in the function of the brain-centered clock, which controls behavioral rhythms of adult flies. With the use of clock genes as markers, putative circadian clocks were mapped in the fly peripheral organs and shown to be independent from clocks located in the brain. A homologue of fruit fly period gene has been identified in moths and other insects, allowing investigations of this gene's role in known insect rhythms. This approach may increase our understanding of how circadian clocks are organized into the circadian system that orchestrates temporal integration of life processess in insects.  相似文献   

18.
Mank JE  Ellegren H 《Heredity》2009,102(3):312-320
Recent reports have suggested that birds lack a mechanism of wholesale dosage compensation for the Z sex chromosome. This discovery was rather unexpected, as all other animals investigated with chromosomal mechanisms of sex determination have some method to counteract the effects of gene dosage of the dominant sex chromosome in males and females. Despite the lack of a global mechanism of avian dosage compensation, the pattern of gene expression difference between males and females varies a great deal for individual Z-linked genes. This suggests that some genes may be individually dosage compensated, and that some less-than-global pattern of dosage compensation, such as local or temporal, exists on the avian Z chromosome. We used global gene expression profiling in males and females for both somatic and gonadal tissue at several time points in the life cycle of the chicken to assess the pattern of sex-biased gene expression on the Z chromosome. Average fold-change between males and females varied somewhat among tissue time-point combinations, with embryonic brain samples having the smallest gene dosage effects, and adult gonadal tissue having the largest degree of male bias. Overall, there were no neighborhoods of overall dosage compensation along the Z. Taken together, this suggests that dosage compensation is regulated on the Z chromosome entirely on a gene-by-gene level, and can vary during the life cycle and by tissue type. This regulation may be an indication of how critical a given gene's functionality is, as the expression level for essential genes will be tightly regulated in order to avoid perturbing important pathways and networks with differential expression levels in males and females.  相似文献   

19.
20.
PrfA是单核细胞增生李斯特菌(LM)中迄今为止发现的惟一个调控绝大多数毒力基因转录表达的蛋白因子.为了研究PrfA转录调控毒力基因表达的分子机制,将无启动子的绿色荧光蛋白(GFP)基因与毒力基因actA的启动子融合,连接到穿梭载体pLSV16质粒上,构建成表达融合载体pLSV16-PactA-gfp,然后将其电转化入LM野生株P14、PrfA高表达突变株P14a和prfA基因等位缺失突变株A42中表达.利用荧光显微镜和荧光酶标仪检测上述3株细菌中绿色荧光蛋白的不同表达强度,从而评价actA基因依赖于PrfA的转录活性强弱.结果显示,绿色荧光蛋白在P14a中发出的荧光强度最高,P14次之,A42最弱,两两比较均有显著差异(P<0.01),表明毒力基因actA的转录水平高低与PrfA的活性成正相关,其转录表达依赖于PrfA的调控;该试验同时也显示GFP能方便、有效地用于研究PrfA调控LM不同毒力基因的转录表达水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号