首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
本文对室内长期饲养的小菜蛾(Plutella xylostella L.)敏感品系和田间采集的抗性种群体内的艾氏剂平氧化酶及细胞色素P-450进行了比较研究。结果证明,艾氏剂环氧化酶在感性和抗性小菜蛾间存在着量及质的差异。抗性种群的艾氏剂环氧化酶的Vmax和Km值分别为感性品系的5.4%和6.5倍。抗性种群的细胞色素P-450的含量是感性品系的1.1—1.3倍。艾氏剂环氧化酶在量上及质上的差异及细胞色素P-450含量的提高是导致小菜蛾抗药性发生与发展的重要机制之一。而且质的差异较之量的差异可能起着更为重要的作用.  相似文献   

2.
用苯巴比妥钠(2mg/g)和氰戊菊酯(0.2mg/g)拌饲料处理,对敏感品系棉铃虫Helicoverpa armigera中肠的细胞色素P450和细胞色素c还原酶含量均具有明显的诱导作用(两者都使细胞色素P450含量提高了2.24倍,使细胞色素c还原酶的含量分别提高1.33和1.40倍),但对细胞色素b5诱导作用不显著(仅为对照的1.23和1.15倍);此外,苯巴比妥钠对敏感棉铃虫中肠的艾氏剂环氧化酶活性和甲氧试卤灵-O-脱甲基酶活性也有显著的诱导作用(分别提高了2.75和2.66倍),但对7-乙氧香豆素-O-脱乙基酶活性没有诱导作用,而氰戊菊酯对敏感棉铃虫中肠的艾氏剂环氧化酶活性则有2.02倍的诱导作用。同一浓度的苯巴比妥钠和氰戊菊酯使抗性品系棉铃虫中肠的细胞色素P450含量分别提高1.21和1.15倍,使细胞色素c还原酶含量分别提高1.48和1.86倍(差异显著),但是细胞色素b5含量没有明显变化(分别为对照的1.15和0.98倍);此外,氰戊菊酯能使抗性棉铃虫中肠的艾氏剂环氧化酶活性提高1.53倍,但苯巴比妥钠对该酶活性则有明显抑制作用。  相似文献   

3.
棉铃虫6龄幼虫中肠与脂肪体微粒体P450酶系的比较   总被引:5,自引:0,他引:5  
邱星辉  李薇  冷欣夫 《动物学报》2002,48(2):208-212
报道了棉铃虫6龄幼虫中肠和脂肪体微粒体P450酶系的组成与加单氧酶活性。与脂肪体微粒体相比,中肠策粒体具有更高的细胞色素P450,细胞色素b5和NADPH-细胞色素P450还原酶含量,表现出较高的艾氏剂环氧化酶和对-硝基苯甲醚O-脱甲基酶活性。SDS-PAGE电泳显示,中肠与脂肪体微粒体介于P450分子量范围内(45-60kDa)的蛋白图谱有所不同,反映出中肠和脂肪体微粒体蛋白组成存在差异。通过对-硝基苯甲醚O-脱甲基酶的动力学分析发现脂肪体微粒体的对-硝基苯甲醚O-脱甲基酶对底物有更强的亲和性,表明不同组织来源的P450同功酶存在质的不同。  相似文献   

4.
在增效醚(PBO)对棉铃虫Jelicoverpa armigera3龄细虫处理后的不同时段,细胞色素P450的含量受到不同程度的抑制,在处理后1h,细胞色素P450的含量仅为对照的43.9%,至处理后12h,细胞色素P450的含量下降到最低点,仅为对照的23.4%,而处理后18~24h,细胞色素P450被抑制的程度有所减弱,其含量分别为对照的85.8%和70.0%。生物测定结果表明,PBO对所测定  相似文献   

5.
艾氏剂环氧化酶及细胞色素P-450对小菜蛾抗药性发展的影响   总被引:13,自引:1,他引:12  
陈言群  杨帆 《昆虫学报》1994,37(3):280-285
本文对室内长期饲养的小菜蛾(Plutella xylostella L.)敏感品系和田间采集的抗性种群体内的艾氏剂环氧化酶及细胞色素P-450进行了比较研究。结果证明,艾氏剂环氧化酶在感性和抗性小菜蛾间存在着量及质的差异。 抗性种群的艾氏剂环氧化酶的Vmax和Km值分别为感性品系的5.4倍和6.5倍。抗性种群的细胞色素P-450的含量是感性品系的1.1-1.3倍。艾氏剂环氧化酶在量上及质上的差异及细胞色素P-450含量的提高是导致小菜蛾抗药性发生与发展的重要机制之一。而且质的差异较之量的差异可能起着更为重要的作用,  相似文献   

6.
棉铃虫不同发育阶段微粒体P450酶系组成和活性的比较   总被引:1,自引:1,他引:1  
邱星辉  李薇  冷欣夫 《昆虫学报》2001,44(2):142-147
比较了棉铃虫Helicoverpa armigera 6龄幼虫、蛹、成虫微粒体P450单加氧酶系组成及其活性。P450含量在6龄幼虫中肠>(脂肪体=蛹)>成虫,NADPH-细胞色素还原酶在幼虫中肠>幼虫脂肪体>蛹>成虫;6龄幼虫脂肪体微粒体与蛹脂肪体微粒体P450含量相近,但NADPH-细胞色素还原酶活性前者是后者的4.2倍;成虫微粒体的细胞色素P450和NADPH细胞色素P450还原酶含量很低,几乎未检测出。用对-硝基苯甲醚和艾氏剂为底物测定P450酶系活性表明,与6龄幼虫相比,蛹和成虫具有极低的单加氧酶活性,其O-脱甲基酶活性未检出,艾氏剂环氧化酶活性比幼虫低2~3个数量级。  相似文献   

7.
杨恩会  林雁  吴益东 《昆虫学报》2006,49(2):247-253
用氰戊菊酯-辛硫磷混剂(有效成分1∶10,简称氰-辛混剂)对棉铃虫Helicoverpa armigera室内品系(YS)进行16代的抗性选育,获得棉铃虫对氰-辛混剂的抗性品系(YS-FP)。YS-FP品系与YS品系相比,对氰-辛混剂的抗性为14.7倍,对其中的单剂氰戊菊酯和辛硫磷的抗性分别为2 170倍和3.1倍。随着筛选的进行,氰戊菊酯和辛硫磷之间的共毒系数在F2代出现短暂的增加,然后逐渐降低,它们之间的互作由增效变为拮抗。交互抗性测定结果表明,YS-FP品系对氯氰菊酯、溴氰菊酯、三氟氯氰菊酯、三唑磷和灭多威产生了明显的交互抗性,对硫丹、多杀菌素和爱玛菌素没有产生交互抗性。YS-FP品系6龄幼虫中肠细胞色素P450氧化酶甲氧基香豆素O-脱甲基活性为YS品系的10倍,3龄幼虫谷胱甘肽S-转移酶和酯酶活性分别是YS品系的1.7倍(CDNB结合作用)和2.4倍(α-NA 酯酶水解作用)。氰-辛混剂的筛选导致了棉铃虫多种解毒酶活性的增加,特别是细胞色素P450氧化酶活性增强最为明显。本研究结果表明氰-辛混剂对棉铃虫的筛选导致了广谱的交互抗性和多种代谢抗性机理,并且两个单剂之间的互作由增效变为拮抗,因此氰 辛混剂在棉铃虫抗性治理中的作用是有限的和暂时的。  相似文献   

8.
微粒体多功能氧化酶系与棉铃虫对氰戊菊酯抗药性的关系   总被引:7,自引:2,他引:5  
邱立红  张文吉 《昆虫学报》2001,44(4):447-453
测定了棉铃虫Helicoverpa armigera抗氰戊菊酯种群及相对敏感种群不同组织微粒体的甲氧试卤灵-O-脱甲基酶、乙氧试卤灵-O-脱乙基酶、乙氧香豆素-O-脱乙基酶、芳烷基羟基化酶和艾氏剂环氧化酶的活性。结果表明:抗性种群棉铃虫中肠组织的这5种酶活性分别比敏感种群的活性提高了11.29、4.10、2.66、6.30和2.34倍,其脂肪体及体壁的相应酶活性则分别为敏感种群的1.46、6.80、1.36、4.05、1.48倍和12.32、2.2、1.33、0.80和0.51倍。两种群中,棉铃虫不同组织部位的各单加氧酶活性均不同,活性高低顺序在两种群间也不同。总体而言,均是中肠或脂肪体微粒体对不同底物的氧化代谢能力最强。  相似文献   

9.
多聚酶链反应检测白色念珠菌   总被引:1,自引:0,他引:1  
近年来,随着白色念珠菌分子生物学研究工作的深入,已有多个白色念珠菌基因得以分离并测序。本文综述了应用白色念珠菌细胞色素P450L1A1(羊毛甾醇-14α-脱甲基酶)基因编码和白色念珠菌特异性片段-EO3基因编码进行多聚酶链反应的研究状况。研究结果表明,PCR法敏感,特异且快速,有希望成为无菌源(如血液,脑脊液,腹腔液)标本中念珠菌检测的有力工具,从根本上解决念珠菌深部感染的诊断问题。  相似文献   

10.
刘永杰  沈晋良 《昆虫学报》2003,46(5):567-572
比较了甜菜夜蛾Spodoptera exigua 抗氯氟氰菊酯品系和敏感品系的繁殖和生长发育特征。结果表明:抗性品系幼虫发育历期延长、蛹重减轻、化蛹率和产卵量降低,抗性品系的适合度为0.61,抗性品系在繁殖和生长发育上存在明显的生存劣势。用两品系3龄幼虫分别测定胡椒基丁醚(PBO)、增效磷SV1)、脱叶磷(DEF)和顺丁烯二酸二乙酯(DEM)对氯氟氰菊酯的增效作用,抗性品系增效倍数与敏感品系增效倍数之比分别为14.1、14.8、2.3和2.3倍,胡椒基丁醚和增效磷对氯氟氰菊酯增效作用最明显,表明多功能氧化酶参与了甜菜夜蛾对氯氟氰菊酯的抗性。抗性品系3龄幼虫酯酶和谷胱甘肽S-转移酶的活性分别为敏感品系的1.05倍和0.91倍, 抗性品系5龄幼虫多功能氧化酶O-脱甲基活性为敏感品系的1.05倍,两品系间3种酶的活性差异不显著,表明甜菜夜蛾对氯氟氰菊酯的抗性与酯酶、谷胱甘肽S-转移酶及多功能氧化酶O-脱甲基酶活性无关。用剂量对数死亡机率值回归线分析法研究甜菜夜蛾对氯氟氰菊酯的抗性遗传规律,表明甜菜夜蛾对氯氟氰菊酯的抗性为常染色体遗传、多基因控制;正、反交后代的显性度分别为0.61和0.43,抗性遗传为不完全显性。  相似文献   

11.
Abstract  The relationship between the cytochrome P-450 (cytP450 monooxygenase and insecticide resistance mechanisms in Helicoverpa armigera was studied. The level of cytP450 and activity of p -ni-troanisole ( p -NA) O-demethylase in resistant strain were 1. 71 times and 2. 21 times respectively higher as compared with those of the susceptible strain. Aldrin epoxidase activity showed 1. 35 fold strain difference. Therefore aldrin epoxidase might not be important for H. armigera resistance mechanism, the level of cytP450 and activity of p -NA O-demethylase might play a vital role in H. armigera resistance mechanisms. The reason of different resistance mechanisms among different H. armigera resistant strains is discussed.  相似文献   

12.
Biochemical mechanisms of malathion resistance were investigated in a malathion-resistant strain of the parasitoid Habrobracon hebetor Say collected from a farm storage in Kansas. General esterase activities were significantly lower in the resistant strain compared with those in a susceptible strain. However, no significant differences were found in activities of malathion specific carboxylesterase (MCE), glutathione S-transferase and cytochrome P450 dependent O-demethylase activities, cytochrome P450 contents, and sensitivity of acetylcholinesterase to inhibition by malaoxon between the 2 strains. Because MCE was not elevated in the resistant strain, the weak malathion resistance in H. hebetor may result from a different mechanism compared with that hypothesized for some insect species in which reduced general esterase activity is accompanied by an elevated MCE. Decreased esterase activity in the resistant strain suggested that null alleles of some esterases were associated with the resistance. Indeed, E1 and E2, major esterases in the susceptible strain, were not present in the resistant strain on polyacrylamide gels that were stained for esterase activity using the model substrate 1-naphthyl acetate. In contrast, the activity of esterase E3 on the gels was much higher in the resistant strain as compared with that of the susceptible strain. These findings indicate that malathion resistance in H. hebetor is associated with both an increased activity of the esterase E3 and null alleles of the esterases E1 and E2.  相似文献   

13.
Cytochrome P450 monooxygenases are a major metabolic mechanism responsible for pyrethroid resistance in Helicoverpa armigera (Hübner) from Asia. Cytochrome P450-mediated O-demethylation activity toward p-nitroanisole (PNOD) of individual fourth instars was determined in five strains of H. armigera by using a microplate reader. The four resistant strains of YS, HD, YGF, and YG59 had 6-, 71-, 2540-, and 11,800-fold resistance, respectively, to fenvalerate in comparison with the susceptible BK77 strain. Their mean PNOD activity was 4-, 10-, 24-, and 60-fold, respectively, compared with the BK77 strain. A strong positive correlation (correlation coefficient r = 0.98) between PNOD activity and fenvalerate resistance was found. Of 48 larvae from each strain, only 4% larvae of the susceptible BK77 strain had detectable PNOD activity, whereas 25, 33, 79, and 96% of larvae from the resistant strains YS, HD, YGF, and YG59 exhibited PNOD activity, respectively. There was a clear discrimination of patterns of PNOD frequency distribution between H. armigera strains and their magnitudes of fenvalerate resistance. The PNOD activity can be used as a biochemical marker for monooxygenase-mediated pyrethroid resistance in field populations of H. armigera.  相似文献   

14.
Five contemporary strains of the bollworm Helicoverpa armigera Hübner from China, Pakistan and India, all with high resistance to pyrethroids, were compared with a standard susceptible strain that originated from the Cote D'Ivoire in the 1970s ('SCD'). Two of the Chinese strains ('YGF' and 'YGFP') were derived by laboratory selection from a third, field collected strain ('YG'). The strain 'YG' exhibited 7-, 14- and 21-fold resistance to fenvalerate, cypermethrin and deltamethrin, respectively. After selection with fenvalerate for 14 generations ('YGF'), this increased to 1690-, 540- and 73-fold. Selection with a mixture of fenvalerate and piperonyl butoxide (PBO) for 14 generations ('YGFP') resulted in resistance ratios of 2510, 2920 and 286. The synergistic ratios to fenvalerate that resulted from pre-treatment of PBO were 5-, 462- and 12-fold in YG, YGF and YGFP strains, respectively. Resistance ratios for a Pakistani strain (PAK) were 2320-, 4100- and 223-fold to fenvalerate, cypermethrin and deltamethrin, respectively. The synergistic ratio of PBO to these pyrethroids was 450-, 950- and 11-fold. The strong synergism of pyrethroids by PBO implied that an oxidative metabolism could be involved in pyrethroid resistance in these resistant strains. The activities of cytochrome P450 monooxygenases from midguts of final instar larvae to p-nitroanisole (PNOD), ethoxycoumarin (ECOD), methoxyresorufin (MROD) significantly increased in all the resistant strains when compared with the susceptible strain. This further implies that cytochrome P450 monooxygenases are involved in pyrethroid resistance in Asian H. armigera. Comparative in vitro studies of the metabolism of 14C-deltamethrin by midgut microsomes of the resistant PAK and susceptible SCD strains showed that the resistant strain had a much greater capacity than the susceptible strain for the metabolic degradation of deltamethrin. This enhanced metabolic degradation occurred in the presence of NADPH which suggested an oxidative detoxification. In the resistant strains, minor increases in glutathione S-transferase activity (to the substrates CDNB and DCNB), and esterase activity (to the substrate alpha-naphthyl acetate) further suggested that, of the putative metabolic mechanisms, oxidases are the most important. This study provides the first evidence that cytochrome P450 monooxygenases are a major metabolic mechanism responsible for pyrethroid resistance in H. armigera from Asia.  相似文献   

15.
对有机磷和拟除虫菊酯抗性 (R)棉铃虫靶标抗性的分子机理 ,即乙酰胆碱酯酶 (AChE)和钠通道敏感度降低进行了研究。根据AChE的动力学常数表明 ,R品系AChE的活性和Vmax值分别是S品系的 1 0 9和 1 2 3倍 ,但R品系的AChE的Km 值仅是S品系的 0 6 7倍。R品系AChE对DDVP和马拉硫磷的Ki值分别是S品系的 0 4 4和 0 55。这表明AChE发生了质的变化。还应用PCR技术对抗性棉铃虫的击倒抗性 (kdr)进行了鉴定 ,克隆了钠通道的IIS6序列、IIS5和IIS6连接片段以及II和III连接片段 ,测序后比较了R和S品系以及其它昆虫的同源性 ,结果在氨基酸水平未发现有任何差异 ,这表明该抗性棉铃虫品系不涉及kdr。  相似文献   

16.
The acetylcholinesterase, carboxylesterase, and cytochrome P450 monooxygenase activities of three strains of Oryzaephilus srinamensis (L.) were examined to better understand biochemical mechanisms of resistance. The three strains were VOS49 and VOSCM, selected for resistance to malathion and chlorpyrifos-methyl, respectively, and VOS48, a standard susceptible strain. Cross-resistance to malathion and chlorpyrifos-methyl was confirmed in VOS49 and VOSCM. Acetylcholinesterase activity was not correlated to resistance among these strains. VOS49 and VOSCM showed elevated levels of carboxylesterase activity based on p-nitrophenylacetate, alpha-naphthyl acetate, or beta-naphthyl acetate substrates. PAGE zymograms showed major differences in caboxylesterase isozyme banding among strains. VOSCM had one strongly staining isozyme band. A band having the same Rf-value was very faint in VOS48. The VOS49 carboxylesterase banding pattern was different from both VOSCM and VOS48. Cytochrome P450 monooxygenase activity was based on cytochrome P450 content, aldrin epoxidase activity, and oxidation of organophosphate insecticides, all elevated in resistant strains. The monooxygenase activity varied with insecticide substrate and resistant strain, suggesting specific cytochromes P450 may exist for different insecticides. The monooxygenase activity of the VOS49 strain was much higher with malathion than chlorpyrifos-methyl as substrates, whereas VOSCM monooxygenase activity was higher with malathion than chlorpyrifos-methyl as substrates. Results are discussed in the context of resistance mechanisms to organophosphate insecticides in O. surinamensis.  相似文献   

17.
Abstract  The molecular mechanisms of target resistance, i. e. acetyicholinesterase (AChE) and sodium channel insensitivity, in the organophosphate(0P)- and pyrethroid(Py)-resistant (R) Helicoverpa armigera were investigated. The activity and Vmax of AChE from R strain were 1.09– and 1.23-fold of the susceptible(S) strain respectively, but the KM value of AChE in R strain was only 0.67-fold of S stain. The Ki values of AChE from the R strain were 0.44 for DDVP and 0.50 for malathion respectively, as compared with those of the S strain. These data showed that the AChE from R strain might be qualitatively altered. The knockdown resistance ( kdr ) of the resistant H. armigera was also identified by PCR technique. The fragments of IIS6, linker of 11–111 and a part of IIS5-IIs6 in the sodium channel were cloned and sequenced, and then compared to amino acid sequences from the R and S strains. and other insect species. There was no difference to be found at amino acid level in the above fragments cloned. It was suggested that the Rdr was not involved in the resistance of R strain.  相似文献   

18.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号