首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A neutral proteinase secreted by rabbit synovial fibroblasts in parallel with specific collagenase was partially purified by ion-exchange chromatography. At pH 7.6 this proteinase degraded 35S-labelled bovine nasal proteoglycan and azo-casein. The enzymic activity was inhibited by EDTA, 1,10-phenanthroline and serum, whereas di-isopropyl phosphorofluoridate and soya-bean trypsin inhibitor had little effect. By gel filtration the apparent mol.wt. of the enzyme was 25000. The fibroblast neutral proteinase was compared with the proteoglycan-degrading neutral proteinases of rabbit polymorphonuclear-leucocyte granules. Two distinct activities were found in the granules: one was inhibited by soya-bean trypsin inhibitor and the other by EDTA. The proteoglycan-degrading proteinases of rabbit fibroblasts and polymorphonuclear leucocytes at acid pH also were examined. Both cathepsin D and a thiol-dependent proteinase contributed to the degradation of proteoglycan at pH 4.5.  相似文献   

2.
The zinnia (Zinnia elegans) mesophyll cell culture tracheary element (TE) system was used to study proteinases active during developmentally programmed cell death. Substrate-impregnated gels and single-cell assays revealed high levels of proteinase activity in differentiating TEs compared with undifferentiated cultured cells and expanding leaves. Three proteinases (145, 28, and 24 kD) were exclusive to differentiating TEs. A fourth proteinase (59 kD), although detected in extracts from all tissues examined, was most active in differentiating TEs. The 28- and 24-kD proteinases were inhibited by thiol proteinase inhibitors, leupeptin, and N-[N-(L-3-trans-carboxirane-2-carbonyl)-L-leucyl]-agmatine (E-64). The 145- and 59-kD proteinases were inhibited by the serine proteinase inhibitor phenylmethylsulfonyl fluoride (PMSF). Extracts from the TE cultures contained sodium dodecyl sulfate-stimulated proteolytic activity not detected in control cultures. Sodium dodecyl sulfate-stimulated proteolysis was inhibited by leupeptin or E-64, but not by PMSF. Other tissues, sucrose-starved cells and cotyledons, that contain high levels of proteolytic activity did not contain TE-specific proteinases, but did contain higher levels of E-64-sensitive activities migrating as 36- to 31-kD enzymes and as a PMSF-sensitive 66-kD proteinase.  相似文献   

3.
Protease activities of rumen protozoa.   总被引:3,自引:1,他引:2       下载免费PDF全文
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

4.
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

5.
An endogenous inhibitor of calcium activated neutral proteinase has been purified from human placenta. The procedure included chromatography on DEAE cellulose, Ultrogel AcA 22 and milli calcium activated neutral proteinase-sepharose in succession. Endogenous calcium activated neutral proteinase inhibitor was a tetramer with identical subunits of molecular weight 68 kDa. It was specific for milli calcium activated neutral proteinase (Calpain II) which is inhibited by the formation of an inactive enzyme-inhibitor complex and not by sequestering Ca2+ from the medium. Although micro calcium activated neutral proteinase (Calpain I) was not inhibited by endogenous calcium activated neutral proteinase inhibitor, it was protected from autolysis in the presence of the inhibitor. The placental endogenous calcium activated neutral proteinase inhibitor thus regulates Ca2+ activated proteolysis by ensuring micro calcium activated neutral proteinase activity, while inhibiting milli calcium activated neutral proteinase.  相似文献   

6.
It was the purpose of this study to define the chromogranin A-processing proteinases present in highly purified preparations of bovine chromaffin granules. The most active enzyme had a pH optimum of 5.0 and was inhibited by pepstatin. It could be identified immunologically as a cathepsin D-like enzyme and subcellular fractionation established its lysosomal origin. After removal of this enzyme the remaining activity at pH 5.0 was mainly due to a cathepsin B-like proteinase. The presence of this enzyme could also be attributed to lysosomal contamination. In the presence of calcium, a further proteolytic activity became apparent at pH 5.0. This enzyme which was inhibited by rho-chloromercuriphenylsulfonic acid was localized in chromaffin granules. A trypsin-like peptidase, most active at pH 8.2, was enriched in a membrane wash of chromaffin granules. Subcellular fractionation indicated that this enzyme is preferentially bound to the membranes of very dense particles probably representing a subpopulation of chromaffin granules. This study establishes that the most active chromogranin A-degrading proteinases present in highly purified chromaffin granules are attributable to lysosomal contamination. Two enzymes with low activity (a Ca2+ activated proteinase and a trypsin-like enzyme) are, apparently, true constituents of chromaffin granules.  相似文献   

7.
Much of the proteolytic activity in the digestive tract of Callosobruchus maculatus larvae can be attributed to a thiol proteinase(s) that hydrolyzes [3H]methemoglobin optimally at pH 5.0. Maximal hydrolysis of [3H]methemoglobin, [3H]alpha-casein, and N-benzoyl-DL-arginine napthylamide-(BANA) required the presence of thiol reducing agents. Larval gut proteinase activity was strongly inhibited by p-hydroxymercuribenzoic acid (pHMB), Nethylmaleimide (NEM), and iodoacetic acid (IAA) but was unaffected by the Bowman-Birk and Kunitz proteinase inhibitors from soybeans or by lima bean trypsin inhibitor. L-Trans-epoxysuccinyl-leucylamido-(4-guanidino)-butane (E-64), a specific inhibitor of thiol proteinases, potently inhibited proteolysis of [3H]methemoglobin by larval gut homogenates. Proteolytic activity in the larval gut was located in the lumen contents and thus appears to play a major role in extracellular digestion. The pH of the larval midgut is slightly acidic, and midgut contents exhibit a negative redox potential, conditions supporting the activity of a thiol proteinase. The significance of these findings is discussed with reference to the vulnerability of this digestive proteinase as a target for existing or genetically engineered plant chemical defenses.  相似文献   

8.
A new extracellular 90-kDa serine proteinase with an isoelectric point (pI) of 3.9 was purified from Bicillus subtilis (natto). Microheterogeneity was detected in the 50-kDa protease of bacillopeptidase F with pI 4.4 reported previously by Wu et al. and the sequence for the first 25 amino acids in the internal region of the enzyme was analyzed: ATDGVEWNVDQIDAPKAWALGYDGA. The cleavage sites in the oxidized B-chain of insulin by the proteinase were CySO3H7-Gly8, Val12-Glu13, Try16-Leu17, and Phe25-Tyr26. The activity was inhibited by phenylmethylsulfonyl fluoride (PMSF) and chymostatin, while the activity was not inhibited by proteinaceous Streptomyces subtilisin inhibitor (SSI) or alpha 2-macroglubulin.  相似文献   

9.
Giardia lamblia: characterization of proteinase activity in trophozoites   总被引:1,自引:0,他引:1  
The proteinase activity of Giardia lamblia trophozoites, Portland 1 strain, was characterized with respect to substrate specificities and inhibitor sensitivities. Proteinase activity with urea-denatured hemoglobin (UDH), alpha-N-benzoyl-DL-arginine-2-naphthylamide (BANA), and alpha-N-benzoyl-argininamide (BAA) as substrates exhibited pH optima of 5.8, 3.8, and 5.0, respectively. For BANA, the apparent Km was 0.20 mM and the Vmax was 2.56 microM. For BAA, the apparent Km was 4.0 mM and the Vmax was 8.69 microM. Dithiothreitol (DTT, 5 mM) enhanced proteinase activity threefold for UDH, fourfold for BAA, and fivefold for BANA. Iodoacetamide, L-tosylamide-2-phenylethyl chloromethyl ketone (TPCK), and N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), each at 1 mM, inhibited proteinase activity by greater than 90% with BANA and BAA. Iodoacetamide inhibited proteinase activity by 35% with UDH; TPCK and TLCK inhibited activity greater than 70% with UDH. Activity on BAA was inhibited by 91% with Zn2+ and activity on UDH was inhibited by 30% with Cu2+. Virtually complete inhibition of proteinase activity on BANA and BAA was obtained with leupeptin and chymostatin at 1 microgram/ml. Pepstatin A, chelators, and other heavy metals had no apparent effect on proteinase activity. Two polypeptide bands (ca. 105 and 40 kDa) indicative of proteinase activity were visualized by sodium dodecyl sulfate-gelatin polyacrylamide gel electrophoresis. The 105 kDa band was visible over the pH range of 4 to 7, but with greater intensity from pH 5 to 7. The 40 kDa band, while present at pH 5, was most intense at pH 6 and 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Artemia trypsin-like proteinase has been reported previously to be highly inhibited in the embryo (B. Ezquieta and C.G. Vallejo (1985) Comp. Biochem. Physiol. 82B, 731-736). We report now that Artemia lipovitellin, the major storage protein complex, inhibits the proteinase. We have carried out an in vitro study of the characteristics of the inhibition. Lipovitellin, a glycolipoprotein of high molecular mass (650 kDa), behaves initially as a substrate but after a limited proteolysis becomes an inhibitor of the proteinase. The enzyme although inhibited in the hydrolysis of the protein substrate retains activity toward low molecular weight substrates. The residual activity on the protein substrate is inhibited by small inhibitors of the proteinase. These features of lipovitellin inhibition are reminiscent of the trap mechanism of alpha 2-macroglobulin inhibition, previously proposed as suitable for regulating proteolytic processes involved in development. Inhibition by lipovitellin is greater at low temperatures and has been determined at 17 and 37 degrees C, in the lower and higher part of the viable temperature range of Artemia development. At high temperature the proteinase hydrolyzes the inhibitor quite efficiently and the inhibition is lower. The inhibition by lipovitellin appears specific for Artemia trypsin-like proteinase when compared with other control pairs protein/proteinase. The results may provide support for an additional role of storage proteins as developmental inhibitors of proteinases.  相似文献   

11.
When fresh extracts of endosperms separated from germinating seeds of Scots pine were dialysed at 5°C, proteinase activity on haemoglobin at pH 3.7 showed only a small initial increase, proteinase activities on casein at pH 5.4 and at pH 7.0 increased several-fold, and all the corresponding inhibitor activities disappeared (Salmia and Mikola 1980, Physiol. Plant. 48: 126–130). To find out what happens during dialysis, both fresh and dialysed extracts were fractionated by gel chromatography on Sephacryl S-200. – The fresh extracts had a major proteinase peak (mol. wt. 42,000) with high activity at pH 3.7 and moderate activities at pH 5.4 and 7.0 (pine proteinase I) and a smaller peak (mol. wt. 30,000) with high activity at pH 5.4 and 7.0 and smaller activity at pH 3.7 (pine proteinase II). In dialysed extracts the situation was reversed: the peak of proteinase I was very small while the peak of proteinase II was very high. Apparently, proteinase I is largely inactivated during dialysis while the activity of proteinase II increases, at least partly due to destruction of inhibitors. – The two enzymes were -SH proteinases, as they were completely inhibited by p -hydroxymercuribenzoate; both of them were also inhibited by the endogenous proteinase inhibitors of resting pine seeds. Besides these enzymes, the endosperm extracts contained pepsin-like acid proteinase activity, which is not affected by the endogenous inhibitors. This enzyme activity was largely inactivated during dialysis.  相似文献   

12.
Dry mature seeds of winged bean (Psophocarpus tetragonolobus L., DC.) (WB) contain several proteinase inhibitors. Two-dimensional gel analysis of WB seed protein followed by activity visualization using a gel-X-ray film contact print technique revealed at least 14 trypsin inhibitors (TIs) in the range of 28-6 kD. A total of seven inhibitors (WBTI-1 to 7) were purified by heat treatment and gel filtration followed by elution from preparative native gels. Based on their biochemical characterization such as molecular mass, pI, heat stability, and susceptibility to inactivation by reducing agents, WBTI-1 to 4 are Kunitz type inhibitors while WBTI-5 to 7 are classified as Bowman-Birk type serine proteinase inhibitors. Although Kunitz type TIs (20-24 kD) of WB have been reported, the smaller TIs that belong to the Bowman-Birk type have not been previously characterized. Seven major TIs isolated from WB seed were individually assessed for their potential to inhibit the gut proteinases (HGP) of Helicoverpa armigera, a pest of several economically important crops, which produces at least six major and several minor trypsin/chymotrypsin/elastase-like serine proteinases in the gut. WBTI-1 (28 kD) was identified as a potent inhibitor of HGP relative to trypsin and among the other WBTIs; it inhibited 94% of HGP activity while at the same concentration it inhibited only 22% of trypsin activity. WBTI-2 (24 kD) and WBTI-4 (20 kD) inhibited HGP activity greater than 85%. WBTI-3,-5,-6 and-7 showed limited inhibition of HGP as compared with trypsin. These results indicate that WBTIs have different binding potentials towards HGP although most of the HGP activity is trypsin-like. We also developed a simple and versatile method for identifying and purifying proteinase inhibitors after two-dimensional separation using the gel-X-ray film contact print technique.  相似文献   

13.
A combination of gel chromatography, fluorimetric analysis and polyacrylamide gel electrophoresis with immunochemical identification, the protein-peptide composition of secretory granules of the lactogenic hormone (LTH) isolated from the anterior lobe of bovine hypophysis was investigated. It was found that the peptide content of the granules is less than 3% of that of immunoreactive LTH. Using gel chromatography, the secretory granules were found to contain a hormone monomer and two immunoreactive forms with Mr 42 and 64 kD. With respect to immunoreactivity, the hormone form content was 90, 3 and 7%, respectively. Using polyacrylamide gel electrophoresis and subsequent immunochemical identification, the presence of four immunoreactive forms of LTH were identified in the secretory granules.  相似文献   

14.
Resting seeds of Scots pine (Pinus sylvestris L.) contain inhibitors which inhibit the proteinase activity present in germinating seeds but have no effect on trypsin or chymotrypsin. When a crude inhibitor preparation was chromatographed on Sephadex G-75, the inhibitor activity separated into four peaks with elution volumes corresponding to the molecular weights 24,000, 14,600, 14,000, and 9000. Each of the inhibitors affected both the hydrolysis of haemoglobin at pH 3.7 and the hydrolysis of casein at pH 5.4 and 7.0 by proteinase extracts prepared from “germinating” endosperms. These results suggest that one major proteinase was possibly acting in all the assays. In resting seeds inhibitor activity was present in both the embryo and the endosperm, the activity (per mg dry weight) in the embryo being about 2-fold that in the endosperm. In the endosperms of germinating seeds the inhibitor activity per seed decreased at about the same rate as total N and dry weight. In the seedlings the activity per seedling remained approximately constant. The patterns of the activity changes suggest that the inhibitors do not control the breakdown of storage proteins; a more probable function is the protection of other cellular components from the high proteinase activities required for the rapid proteolysis during germination.  相似文献   

15.
Rat RNK-16 leukemia cells kill YAC-1, which are the cells lysed by rodent natural killer lymphocytes. We found chymotrypsin-like proteinase ('chymase') activity in the RNK-16 dense granules that also contain cytolytic activity. The chymase activity hydrolyzed the thiobenzyl peptide substrate Suc-Phe-Leu-Phe-SBzl and, in comparison to RNK-16 tryptase activity, was selectively inhibited by three different types of serine proteinase inhibitors. The selective inhibitors were the fungal aldehyde chymostatin, the chloromethylketone Z-Gly-Leu-Phe-CH2Cl, and the mechanism-based or 'suicide' inhibitor 7-amino-4-chloro-3-(2-phenylethoxy)isocoumarin. These proteinase inhibitors also blocked RNK-16 granule-mediated cytolysis. Chymostatin, a reversible inhibitor, delayed granule-mediated cytolysis, whereas the irreversible chloromethylketone and isocoumarin proteinase inhibitors completely abrogated granule-mediated cytolysis. The two irreversible inhibitors displayed biphasic inhibition of the chymase activity, indicating that at least two chymases are present in the granules. By Northern blot analysis, we found that RNK-16 mRNA hybridized strongly with a cDNA probe of CCPI, a mouse cytotoxic T lymphocyte serine proteinase gene. These data imply that chymase activity in the cytotoxic granules is important for cytolytic function and is likely to belong to a new subfamily of serine proteinases.  相似文献   

16.
Proteinases capable of cleaving proenkephalin into smaller peptides have been identified in bovine adrenal chromaffin granules using [35S]methionine-labeled recombinant rat proenkephalin as a selective substrate in sodium dodecyl sulfate-polyacrylamide gel electrophoresis proteinase radiozymography. This technique was used for the screening of subcellular fractions, general characterization of pH optima, and the mechanistic characterization of proteinases with both reversible and irreversible inhibitors. Two enzymes with approximate molecular masses of 76 and 30 kDa were shown to be localized to the highest-density fractions of chromaffin granules by sucrose density gradient fractionation. Both were enriched in a 1 M NaCl wash of purified chromaffin granule membranes, were active at high pH, and were characterized as serine proteinases based on inhibition by soybean trypsin inhibitor. The 30-kDa enzyme was also inhibited by diisopropyl fluorophosphate, D-Phe-Pro-Arg-CH2Cl, and D-Val-Phe-Lys-CH2Cl and appeared to be the previously described adrenal trypsin-like enzyme. A third enzyme, of 66 kDa, was also associated with the 1 M NaCl wash of purified chromaffin granule membranes but was not localized exclusively to chromaffin granules in sucrose gradients. This proteinase was found to be Ca2+ activated and inhibited by EDTA but not diisopropyl fluorophosphate, soybean trypsin inhibitor, p-chloromercuriphenylsulfonic acid, 1,10-phenanthroline, or pepstatin.  相似文献   

17.
The culture filtrate of Bacillus intermedius 3-19 was used for isolation by chromatography on CM-cellulose and Mono S columns of a proteinase that is secreted during the late stages of growth. The enzyme is irreversibly inhibited by the inhibitor of serine proteinases diisopropyl fluorophosphate, has two pH optima (7.2 and 9.5) for casein hydrolysis and one at pH 8.5 for Z-Glu-pNA hydrolysis. The molecular weight of the enzyme is 26.5 kD. The K(m) for Z-Glu-pNA hydrolysis is 0.5 mM. The temperature and pH dependences of the stability of the proteinase were studied. The enzyme was identified as glutamyl endopeptidase 2. The N-terminal sequence (10 residues) and amino acid composition of the enzyme were determined. The enzyme hydrolyzes Glu4-Gln5, Glu17-Asp18, and Cys11-Ser12 bonds in the oxidized A-chain of insulin and Glu13-Ala14, Glu21-Arg22, Cys7-Gly8, and Cys19-Gly20 bonds in the oxidized B-chain of insulin.  相似文献   

18.
The proteinase (proteinase F) responsible for the initial proteolysis of the mung bean (Vigna radiata) trypsin inhibitor (MBTI) during germination has been purified 1400-fold from dry beans. The enzyme acts as an endopeptidase, cleaving the native inhibitor, MBTI-F, to produce the first modified inhibitor form, MBTI-E. The cleavage of the Asp76-Lys77 peptide bond of MBTI-F occurs at a pH optimum of 4.5, with the tetrapeptide Lys-Asp-Asp-Asp being released. Proteinase F exhibited no activity against the modified inhibitor forms MBTI-E and MBTI-C. Vicilin, the major storage protein of the mung bean, does not serve as a substrate for proteinase F between pH 4 and 7. Proteinase F is inhibited by phenylmethylsulfonyl fluoride, chymostatin, p-hydroxymercuribenzoate, and p-chlorophenylsulfonate, but not by iodoacetate and CuCl2. It is not activated by dithiothreitol, and is stable for extended periods of time (10 months, 4°C, pH 4.0) in the absence of reducing agents. An apparent molecular weight of 65,000 was found for proteinase F by gel filtration. Subcellular fractionation in glycerol suggests that greater than 85% of the proteinase F activity is found in the protein bodies of the ungerminated mung bean. The same studies indicate that at least 56% of the MBTI of the seed is also localized in the protein bodies.  相似文献   

19.
The mitoplasts were prepared from bullfrog (Rana catesbeiana) liver mitochondria by treatment with digitonin and were then separated into the matrix and inner membrane fractions. The matrix fraction thus obtained was free of lysosomal contaminations and exhibited a distinct proteinase activity. pH dependency of the matrix proteinase activity measured in the presence and absence of iodoacetamide revealed that the matrix contained at least two kinds of proteinase, a major alkaline thiol proteinase having an optimal pH at 8.5 and a minor neutral proteinase having an optimal pH at 7.5. The major matrix proteinase activity was strongly inhibited by leupeptin, chymostatin, antipain and E64-C, an inhibitor of Ca2+-dependent thiol proteinase, while it was scarcely affected by diethylpyrocarbonate. The activity was also inhibited by DTNB and p-chloromercuribenzoate. Addition of hydrocarbon compounds such as ethylene glycol, glycerol, Triton X-100 and poly (ethylene glycol) to the reaction mixture was found to decrease the matrix proteinase activity. Neither cytochrome c nor glutamate dehydrogenase was hydrolyzed when subjected to the matrix proteinase activity in vitro. On the other hand, cytochrome c oxidase was effectively hydrolyzed, and the enzyme associated with the mitochondrial innermembrane fragments was partially hydrolyzed by the major matrix proteinase activity.  相似文献   

20.
The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号