首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
TNFalpha is a major osteoclastogenic cytokine and a primary mediator of inflammatory osteoclastogenesis. We have previously shown that this cytokine directly targets osteoclasts and their precursors and that deletion of its type-1 receptor (TNFr1) lessens osteoclastogenesis and impacts RANK signaling molecules. Osteoclastogenesis is primarily a RANK/RANKL-dependent event and occurs in an environment governed by both hematopoietic and mesenchymal compartments. Thus, we reasoned that TNF/TNFr1 may regulate RANKL and possibly RANK expression by stromal cells and osteoclast precursors (OCPs), respectively. RT-PCR experiments reveal that levels of RANKL mRNA in WT stromal cells are increased following treatment with 1,25-VD3 compared to low levels in TNFr1-null cells. Expression levels of OPG, the RANKL decoy protein, were largely unchanged, thus supporting a RANKL/OPG positive ratio favoring WT cells. RANK protein expression by OCPs was lower in TNFr1-null cells despite only subtle differences in mRNA expression in both cell types. Mix and match experiments of different cell populations from the two mice phenotypes show that WT stromal cells significantly, but not entirely, restore osteoclastogenesis by TNFr1-null OCPs. Similar results were obtained when the latter cells were cultured in the presence of exogenous RANKL. Altogether, these findings indicate that in the absence of TNFr1 both cell compartments are impaired. This was further confirmed by gain of function experiments using TNFr1- null cultures of both cell types at which exogenous TNFr1 cDNA was virally expressed. Thus, restoration of TNFr1 expression in OCPs and stromal cells was sufficient to reinstate osteoclastogenesis and provides direct evidence that TNFr1 integrity is required for optimal RANK-mediated osteoclastogenesis.  相似文献   

14.
15.
Signaling through the receptor activator of nuclear factor kappa B (RANK) is required for both osteoclast differentiation and mammary gland development, yet the extent to which RANK utilizes similar signaling pathways in these tissues remains unclear. Mice expressing a kinase-inactive form of the inhibitor of kappa B kinase alpha (IKK alpha) have mammary gland defects similar to those of RANK-null mice yet have apparently normal osteoclast function. Because mice that completely lack IKK alpha have severe skin and skeletal defects that are not associated with IKK alpha-kinase activity, we wished to directly examine osteoclastogenesis in IKK alpha(-/-) mice. We found that unlike RANK-null mice, which completely lack osteoclasts, IKK alpha(-/-) mice did possess normal numbers of TRAP(+) osteoclasts. However, only 32% of these cells were multinucleated compared with 57% in wild-type littermates. A more profound defect in osteoclastogenesis was observed in vitro using IKK alpha(-/-) hematopoietic cells treated with colony-stimulating factor 1 and RANK ligand (RANKL), as the cells failed to form large, multinucleated osteoclasts. Additionally, overall RANKL-induced global gene expression was significantly blunted in IKK alpha(-/-) cells, including osteoclast-specific genes such as TRAP, MMP-9, and c-Src. IKK alpha was not required for RANKL-mediated I kappa B alpha degradation or phosphorylation of mitogen-activated protein kinases but was required for RANKL-induced p100 processing. Treatment of IKK alpha(-/-) cells with tumor necrosis factor alpha (TNF alpha) in combination with RANKL led to partial rescue of osteoclastogenesis despite a lack of p100 processing. However, the ability of TNF alpha alone or in combination with transforming growth factor beta to induce osteoclast differentiation was dependent on IKK alpha, suggesting that synergy between RANKL and TNFalpha can overcome p100 processing defects in IKK alpha(-/-) cells.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号