首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The amount of F′lac DNA as a percentage of total DNA in Escherichia coli was determined by DNA-DNA hybridization at a number of growth rates. The data are in closest agreement with the hypothesis that episome replication coincides with termination of rounds of chromosome replication and are inconsistent with the hypotheses that it occurs at a constant cell age, or at the same time as initiation of rounds of chromosome replication. The possibility that episome replication occurs at a constant mass:particle ratio is not ruled out by the data presented.  相似文献   

2.
3.
Origin and sequence of chromosome replication in Escherichia coli   总被引:59,自引:0,他引:59  
Two methods have been used to determine the origin and direction of chromosome replication in Escherichia coli: gradient of marker frequency and sequence of replication in synchronized cultures. In both cases, DNA-DNA hybridization was used to assay for gene dosage. A series of isogenic strains were made lysogenic for phage λ and for phage Mu-1, with phage Mu-1 in a different chromosomal location in each strain. In a first group of experiments, DNA from exponential cultures of the various strains was extracted, denatured, immobilized on filters and hybridized against a mixture of differentially labeled phage λ and phage Mu-1 DNA. This was done for several culture conditions. The ratio of hybridization Mu-1/λ gives a measurement of the dosage of the chromosome region where phage Mu-1 is integrated. A plot of this ratio versus map position reflects the marker frequency distribution.  相似文献   

4.
Symmetric multifork chromosome replication in fast-growing Escherichia coli   总被引:1,自引:0,他引:1  
Density transfer experiments were performed on Escherichia coli growing exponentially in rich medium. The results rule out asymmetric multifork “rolling circle” replication for the E. coli chromosome replicating in rich medium, and are consistent with symmetric multifork replication, with the reinitiations taking place on the two daughter chromosomes simultaneously.  相似文献   

5.
Origin and sequence of chromosome replication in Escherichia coli B-r   总被引:6,自引:14,他引:6       下载免费PDF全文
The initial rates of induced synthesis of tryptophanase, beta-galactosidase, and d-serine deaminase were measured in relation to the chromosome replication cycle of Escherichia coli B/r. Exponentially growing cultures were exposed briefly to (14)C-thymidine or the appropriate inducers (or both), and the amount of label or enzyme (or both) in cells of different ages was found by measuring these quantities in their progeny. The rates of induced synthesis of the three enzymes increased abruptly at about 4, 20, and 34 min, respectively, after the start of a round of replication lasting 40 min. By matching this sequence to the ind, lac, and Dsd loci on the genetic map of E. coli K-12, it was estimated that replication began at about 8 o'clock (60 min) and proceeded clockwise. In rapidly growing cells, the sequence during the division cycle was consistent with the concept that rounds of replication overlapped.  相似文献   

6.
On the origin of replication of Escherichia coli chromosome   总被引:2,自引:0,他引:2  
DNA labelled with [3H]thymine near the beginning or near the terminus of chromosomal replication was hybridized with isolated F′13, F′14 and F′15 DNA's. The presented results show that the ilv marker replicates earlier than the lac or thy markers in the cycle of chromosomal replication of Escherichia coli strains, K12F AY5 and 15T 557.  相似文献   

7.
Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks.  相似文献   

8.
Control of cyclic chromosome replication in Escherichia coli.   总被引:6,自引:0,他引:6       下载免费PDF全文
The biochemical basis for cyclic initiation of bacterial chromosome replication is reviewed to define the processes involved and to focus on the putative oscillator mechanism which generates the replication clock. The properties required for a functional oscillator are defined, and their implications are discussed. We show that positive control models, but not negative ones, can explain cyclic initiation. In particular, the widely accepted idea that DnaA protein controls the timing of initiation is examined in detail. Our analysis indicates that DnaA protein is not involved in the oscillator mechanism. We conclude that the generations of a single leading to cyclic initiation is separate from the initiation process itself and propose a heuristic model to focus attention on possible oscillator mechanisms.  相似文献   

9.
Escherichia coli minichromosomes harboring as little as 327 base pairs of DNA from the chromosomal origin of replication (oriC) were found to replicate in a discrete burst during the division cycle of cells growing with generation times between 25 and 60 min at 37 degrees C. The mean cell age at minichromosome replication coincided with the mean age at initiation of chromosome replication at all growth rates, and furthermore, the age distributions of the two events were indistinguishable. It is concluded that initiation of replication from oriC is controlled in the same manner on minichromosomes and chromosomes over the entire range of growth rates and that the timing mechanism acts within the minimal oriC nucleotide sequence required for replication.  相似文献   

10.
Cell division properties of Escherichia coli B/r containing either a dnaC or a dnaI mutation were examined. Incubation at nonpermissive temperature resulted in the eventual production of cells of approximately normal size, or slightly smaller, which lacked chromosomal DNA. The cell division patterns in cultures which were grown at permissive temperature and then shifted to nonpermissive temperature were consistent with: first, division and equipartition of chromosomes by cells which were in the C and D periods at the time of the shift; second, an apparent delay in cell division; and third, commencement of the formation of chromosomeless cells. In glucose-grown cultures of the dnaI mutant, production of chromosomeless cells continued for at least 120 min, whereas in the dnaC mutant chromosomeless cells were formed during a single interval between 110 and 130 min after the temperature shift. The results are discussed in light of the hypothesis that replication of a specific chromosomal region is not an obligatory requirement for the initiation and completion of the processes leading to division in a cell which contains at least one functioning chromosome.  相似文献   

11.
12.
A newly isolated dnaK mutant of Escherichia coli, which contains the mutation dnaK111, has been found to be conditionally defective in initiation of DNA replication. Mutant cells that were transferred to high temperature exhibited residual DNA synthesis before the synthesis stopped completely. Analysis of the DNA synthesized at high temperature by hybridization with probe DNAs for detection of DNA replicated in the origin (oriC) and terminal (terC) regions has revealed that this mutant is unable to initiate a new round of DNA replication at high temperature after termination of the round in progress. The cells exposed to high temperature were subsequently capable of initiating DNA replication at low temperature in a synchronous manner. DNA synthesis of this mutant became temperature resistant upon inactivation of the rnh gene, similar to that of dnaA mutants, although cell growth of the dnaK mutant with the inactive rnh gene remained temperature sensitive. The dnaK mutation prevented DNA synthesis of lambda bacteriophage at high temperature even in the absence of the rnh gene function.  相似文献   

13.
14.
15.
《The EMBO journal》1986,5(11):3074
[This corrects the article on p. 1711 in vol. 5, PMID: 3527695.].  相似文献   

16.
The epsilon subunit of the Escherichia coli replicative DNA polymerase III is the proofreading 3'-5' exonuclease. Structures of its catalytic N-terminal domain (epsilon186) were determined at two pH values (5.8 and 8.5) at resolutions of 1.7-1.8 A, in complex with two Mn(II) ions and a nucleotide product of its reaction, thymidine 5'-monophosphate. The protein structure is built around a core five-stranded beta sheet that is a common feature of members of the DnaQ superfamily. The structures were identical, except for differences in the way TMP and water molecules are coordinated to the binuclear metal center in the active site. These data are used to develop a mechanism for epsilon and to produce a plausible model of the complex of epsilon186 with DNA.  相似文献   

17.
The initiation mass, defined as cell mass per origin of deoxyribonucleic acid replication (optical density units at 460 nm of culture/origins per milliliter of culture), reflects the intracellular concentration or activity of a hypothetical factor that controls initiation of chromosome replication in bacteria. In Escherichia coli B/r, the initiation mass was found to increase about twofold with increasing growth rate between 0.6 and 1.6 doublings per h; at higher growth rates it remained essentially constant (measured up to 2.4 doublings per h). A low-thymine-requiring (thyA deoB) derivative of E. coli B/r, strain TJK16, was found to have a 60 to 80% greater initiation mass than B/r which was independent of the replication velocity and not related to the thyA and deoB mutations. It is suggested that TJK16 had acquired, during its isolation, a mutation in a gene affecting the initiation of deoxyribonucleic acid replication. The initiation age was not altered by this mutation, but other parameters, including deoxyribonucleic acid concentration and cell size, were changed in comparison with the B/r parent, as expected from theoretical considerations.  相似文献   

18.
19.
Growth inhibition of the dnaA(Cs) mutant, which overinitiates chromosome replication, was shown to be dependent upon the nucleoid protein H-NS. [3H]thymine incorporation experiments indicated that the absence of H-NS inhibited overreplication by the dnaA(Cs) mutant. In addition, the temperature-sensitive phenotype of a dnaA46 mutant was enhanced by disruption of H-NS. These observations suggest that H-NS directly or indirectly facilitates the initiation of chromosome replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号