首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection by bacteriophage T4 has previously been shown to cause a rapid inhibition of the host recBC DNase, an ATP-dependent DNase that is required for genetic recombination in Escherichia coli. We report here the partial purification of a protein ("T4 rec inhibitor") from extracts of T4-infected cells and some characteristics of the in vitro inhibition reaction with purified inhibitor and recBC nuclease. This inhibitory activity could not be purified from extracts of uninfected E. coli. Both the ATP-dependent exonuclease and DNA-dependent ATPase activities of recBC DNase are inhibited by T4 rec inhibitor. Experiments suggest that the inhibitor interacts with the nuclease in a stoichiometric manner. The biological significance of this inhibition is discussed with respect to control reactions in phage-infected cells.  相似文献   

2.
Lethal, amber mutations in T4 genes 46 and 47 cause incomplete degradation of host DNA, premature arrest of phage DNA synthesis, accumulation of abnormal DNA replication intermediates, and defective recombination. These phenotypes can be explained by the hypothesis that genes 46 and 47 control a DNA exonuclease, but in vitro demonstration of such a nuclease has not yet been reported. Membrane and supernatant fractions from 46- and 47- mutant-infected and 46+ 47+ control-infected cells were assayed for the presence of the protein products of these genes (i.e., gp46 and gp47) and for the ability to degrade various DNA substrates to acid-soluble products in vitro. The two proteins were found only on membranes. The membrane fraction from 46- 47- mutant-infected cells digested native or heavily nicked Escherichia coli DNA to acid-soluble products three to four times slower that the membrane fraction from control-infected cells. No such effect was found in the cytoplasmic fractions. The effect on nuclease activity in membranes was the same whether 46- and 47- mutations were present singly or together. NaClO4, a chaotropic agent, released both gp46 and gp47 from 46+ 47+ membranes, as well as the DNase activity controlled by genes 46 and 47. DNA cellulose chromatography of proteins released from membranes by NaClO4 showed that gp46 and gp47 bound to the native DNAs of both E. coli and T4. Thus, the overall enrichment of gp46 and gp47 relative to total T4 protein was 600-fold (10-fold in membranes, 2-fold more upon release from membranes by NaClO4, and 30-fold more upon elution from DNA cellulose). T4 das mutations, which partially suppress the defective phenotype of 46- and 47- mutants, caused a considerable increase in vitro DNase activity in both membrane and cytoplasmic fractions, We obtained evidence that the das+ gene does not function to inhibit E. coli exonuclease I or V, endonuclease I, or the UV endonuclease of gene uvrA or to decrease the activity of T4 exonuclease A or the T4 gene 43 exonuclease.  相似文献   

3.
L Roberts  P Sadowski  J T Wong 《Biochemistry》1982,21(23):6000-6005
Bacteriophage T7 codes for a single-stranded DNA binding protein. This protein is the product of gene 2.5 and has been found previously to stimulate specifically the activity of the phage-coded DNA polymerase. We report here that the T7 DNA binding protein also stimulates the activity of the phage-coded exonuclease. The gene 6 exonuclease is a double-stranded DNA specific 5'-exonuclease that has been implicated in destruction of bacterial DNA, removal of RNA primers during DNA replication, genetic recombination, and DNA maturation. The enzyme is markedly inhibited by physiological concentrations of NaCl. This inhibition, which is due to a marked reduction in the Vmax of the enzyme, can be largely overcome by the phage-coded DNA binding protein. This stimulation is specific since the Escherichia coli DNA binding protein is without effect. The stimulation by the binding protein is apparently not due to its coating of the 3' single-stranded tails generated during the digestion. Kinetic studies show that the stimulation is due to a combined effect on both the Km and Vmax of the exonuclease. These studies are consistent with a loose binding of the binding protein to either the DNA or the exonuclease.  相似文献   

4.
Phenothiazines and related compounds bind to mitochondrial membranes in approximate proportion to their affinities for calmodulin. Penfluridol (16 microM), pimozide (20 microM), or trifluoperazine (66 microM) completely inhibit ADP-stimulated respiration in isolated rat liver mitochondria, but exert no effect on either uncoupler- or Ca2+-stimulated respiration. The inhibition of ADP-stimulated respiration results from inhibition of the oligomycin-sensitive ATPase. Inhibition of the ATPase does not involve interaction of phenothiazine with calmodulin. The addition of calmodulin with or without calcium to mitochondrial inner membrane preparations has no effect on ATPase activity. The addition of EGTA and the ionophore A23187 prior to the addition of phenothiazine does not prevent the phenothiazine-induced inhibiton of the ATPase. Measurements of inner membrane calmodulin content by gel electrophoresis or cyclic nucleotide phosphodiesterase activation are negative. Despite the absence of calmodulin in the inner membrane preparations, 12.5 nmol trifluoperazine bind per 100 microgram of membrane protein with an association constant, K, of 6.5 . 10(4) M-1. We conclude that calmodulin-binding neuroleptic agents, when added to whole cells, have the potential to disrupt mitochondrial energy production by a reaction which apparently does not involve a phenothiazine-calmodulin interaction.  相似文献   

5.
D C Thomas  D C Rein    R R Meyer 《Nucleic acids research》1988,16(14A):6447-6464
DNA-dependent ATPase IV has been purified to near homogeneity from the Novikoff rat hepatoma. The enzyme is devoid of DNA polymerase, RNA polymerase, exonuclease, endonuclease, phosphomonoesterase, 3'- or 5'-phosphodiesterase, polynucleotide kinase, protein kinase, topoisomerase, helicase or DNA reannealing activities at a detection level of 10(-5) to 10(-7) relative to the ATPase activity. The enzyme is a monomer of Mr 110,000, has a sedimentation coefficient of 5.9 S, a Stokes radius of 40 A and a frictional coefficient of 1.32. In the presence of Mg2+ ion and a polynucleotide effector, ATPase IV hydrolyzes either ATP or dATP to the nucleoside diphosphate plus Pi. Other ribo- or deoxyribonucleoside triphosphates are not substrates. ATPase IV utilizes double-stranded DNA and single-stranded DNA as effector; however, it does not utilize poly(dT). The Km for dsDNA or ssDNA is 2.2 microM (nucleotide). A variety of ATP analogues were found to be competitive inhibitors of ATPase IV.  相似文献   

6.
Homogeneous gene 5 protein of bacteriophage T7, a subunit of T7 DNA polymerase, catalyzes the stepwise hydrolysis of single-stranded DNA in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The gene 5 protein itself does not hydrolyze duplex DNA. However, in the presence of Escherichia coli thioredoxin, the host-specified subunit of T7 DNA polymerase, duplex DNA is hydrolyzed in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The apparent Km for thioredoxin in the reaction is 4.8 x 10(-8) M, a value similar to that for the apparent Km of thioredoxin in the complementation assay with gene 5 protein to restore T7 DNA polymerase activity. Both exonuclease activities require Mg2+ and a sulfhydryl reagent for optimal activity, and both activities are sensitive to salt concentration. Deoxyribonucleoside 5'-triphosphates inhibit hydrolysis by both exonuclease activities; hydrolysis of single-stranded DNA by the gene 5 protein is inhibited even in the absence of thioredoxin where there is less than 2% active T7 DNA polymerase. E. coli DNA binding protein (helix destabilizing protein) stimulates the hydrolysis of duplex DNA up to 9-fold under conditions where the hydrolysis of the single-stranded DNA is inhibited 4-fold.  相似文献   

7.
Iejimalides are novel macrolides that are cytostatic or cytotoxic against a wide range of cancer cells at low nanomolar concentrations. A recent study by our laboratory characterized the expression of genes and proteins that determine the downstream effects of iejimalide B. However, little is known about the cellular target(s) of iejimalide or downstream signaling that lead to cell‐cycle arrest and/or apoptosis. Iejimalides have been shown to inhibit the activity of vacuolar H+‐ATPase (V‐ATPase) in osteoclasts, but how this inhibition may lead to cell‐cycle arrest and/or apoptosis in epithelial cells is not known. In this study, MCF‐7 breast cancer cells were treated with iejimalide A or B and analyzed for changes in cell‐cycle dynamics, apoptosis, lysosomal pH, cytoplasmic pH, mitochondrial membrane potential, and generation of reactive oxygen species. Both iejimalides A and B sequentially neutralize the pH of lysosomes, induce S‐phase cell‐cycle arrest, and trigger apoptosis in MCF‐7 cells. Apoptosis occurs through a mechanism that involves oxidative stress and mitochondrial depolarization but not cytoplasmic acidification. These data confirm that iejimalides inhibit V‐ATPase activity in the context of epithelial tumor cells, and that this inhibition may lead to a lysosome‐initiated cell death process. J. Cell. Biochem. 109: 634–642, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Shen JC  Loeb LA 《Nucleic acids research》2000,28(17):3260-3268
Werner syndrome (WS) is an autosomal recessive disease characterized by early onset of many features of aging, by an unusual spectrum of cancers, and by genomic instability. The WS protein (WRN) possesses 3′→5′ DNA helicase and associated ATPase activities, as well as 3′→5′ DNA exonuclease activity. Currently, WRN is the only member of the widely distributed RecQ DNA helicase family with documented exonuclease activity. It is not known whether deficiency of the exonuclease or helicase/ATPase activities of WRN, or all of them, is responsible for various elements of the WS phenotype. WRN exonuclease has limited homology to Escherichia coli RNaseD, a tRNA processing enzyme. We show here that WRN preferentially degrades synthetic DNA substrates containing alternate secondary structures, with an exonucleolytic mode of action suggestive of RNaseD. We present evidence that structure-dependent binding of WRN to DNA requires ATP binding, while DNA degradation requires ATP hydrolysis. Apparently, the exonuclease and ATPase act in concert to catalyze structure-dependent DNA degradation. We propose that WRN protein functions as a DNA processing enzyme in resolving aberrant DNA structures via both exonuclease and helicase activities.  相似文献   

9.
The newly identified specific V-ATPase inhibitor, salicylihalamide A, is distinct from any previously identified V-ATPase inhibitors in that it inhibits only mammalian V-ATPases, but not those from yeast or other fungi (Boyd, M. R., Farina, C., Belfiore, P., Gagliardi, S., Kim, J. W., Hayakawa, Y., Beutler, J. A., McKee, T. C., Bowman, B. J., and Bowman, E. J. (2001) J. Pharmacol. Exp. Ther. 297, 114-120). In addition, salicylihalamide A does not compete with concanamycin or bafilomycin for binding to V-ATPase, indicating that it has a different binding site from those classic V-ATPase inhibitors (Huss, M., Ingenhorst, G., Konig, S., Gassel, M., Drose, S., Zeeck, A., Altendorf, K., and Wieczorek, H. (2002) J. Biol. Chem. 277, 40544-40548). By using purified bovine brain V-pump and its dissociated V(1) and V(0) sectors, we identified the recognition and binding site for salicylihalamide to be within the V(0) domain. Salicylihalamide does not inhibit the ATP hydrolysis activity of the dissociated V(1)-ATPase but inhibits the ATPase activity of the holoenzyme by inhibiting the V(0) domain. Salicylihalamide causes a dramatic redistribution of cytosolic V(1) from soluble to membrane-associated form, a change not observed in cells treated with either bafilomycin or NH(4)Cl. By synthesizing and characterizing a series of salicylihalamide derivatives, we investigated the structural determinants of salicylihalamide inhibition in terms of potency and reversibility, and used this information to suggest a possible binding mechanism.  相似文献   

10.
Rad50 and Mre11 form a complex involved in the detection and processing of DNA double strand breaks. Rad50 contains an anti-parallel coiled-coil with two absolutely conserved cysteine residues at its apex. These cysteine residues serve as a dimerization domain and bind a Zn2+ cation in a tetrathiolate coordination complex known as the zinc-hook. Mutation of the zinc-hook in bacteriophage T4 is lethal, indicating the ability to bind Zn2+ is critical for the functioning of the MR complex. In vitro, we found that complex formation between Rad50 and a peptide corresponding to the C-terminal domain of Mre11 enhances the ATPase activity of Rad50, supporting the hypothesis that the coiled-coil is a major conduit for communication between Mre11 and Rad50. We constructed mutations to perturb this domain in the bacteriophage T4 Rad50 homolog. Deletion of the Rad50 coiled-coil and zinc-hook eliminates Mre11 binding and ATPase activation but does not affect its basal activity. Mutation of the zinc-hook or disruption of the coiled-coil does not affect Mre11 or DNA binding, but their activation of Rad50 ATPase activity is abolished. Although these mutants excise a single nucleotide at a normal rate, they lack processivity and have reduced repetitive exonuclease rates. Restricting the mobility of the coiled-coil eliminates ATPase activation and repetitive exonuclease activity, but the ability to support single nucleotide excision is retained. These results suggest that the coiled-coiled domain adopts at least two conformations throughout the ATPase/nuclease cycle, with one conformation supporting enhanced ATPase activity and processivity and the other supporting nucleotide excision.  相似文献   

11.
Expression of myosin isoenzymes in cardiac-muscle cells in culture.   总被引:3,自引:0,他引:3  
Myosin isoenzyme profiles of rat and chicken embryonic cardiac myocytes were studied during differentiation and growth in vitro by native-gel electrophoresis and assay of Ca2+-activated ATPase. The electrophoretic pattern of myosin extracted from 18-day-embryonic-rat myocytes after 7 days in culture exhibits three isoenzyme bands, V1, V2 and V3, of which the slow-migrating V3 is predominant. This resembles the isoenzyme profiles from 18-20-day-embryonic ventricles in vivo. However, the isoenzyme profile of the 7-day-old culture differs from that of its counterpart in vivo, as well as from that of the young and adult rat ventricles, the last two containing the predominant fast-migrating component, V1. When embryonic cardiac myocytes were grown in vitro for 7 days in a medium containing a physiological concentration of L-thyroxine (T4), myosin isoenzyme profiles of these cells shifted to the adult form, with isoenzyme V1 predominating after day 4 of culture. The 7-day-old intact embryonic-chicken ventricles and isolated myocytes showed a single myosin isoenzyme band after 7 days of culture that resembles the pattern seen for the adult chicken. T4 had no effect on the electrophoretic mobility of this isoenzyme pattern. ATPase activity of isoenzyme V1 in cultured rat myocytes treated with T4 was comparable with that of V1 in the untreated adult heart. This study demonstrates that ATPase activity of the chicken myosin isoenzyme is significantly lower than that of isoenzyme V1, but is comparable with that of rat V3. This study shows that the expression of myosin isoenzyme profiles in cultured rat cardiac myocytes does not fully represent the situation in vivo. Physiological concentrations of T4 can modulate the predominant foetal-type isoenzyme V3 to the adult type V1 in cultured embryonic-rat cardiac myocytes within a brief period.  相似文献   

12.
The distribution of isomyosin in cardiac muscle cells in culture has been investigated with monoclonal antibodies and Ca2+-activated myosin ATPase cytochemical staining. With immunofluorescent studies using monoclonal antibodies to isomyosins V1 and V3, the cardiac myocytes grown in a serum-free and thyroxine (T4)-free medium for 7 days contained a predominant population of cells which were strongly reactive to anti-V3 antibody. A small population of myocytes in this culture exhibited weak or no reaction to anti-V3 antibody. When cultures were exposed to anti-V1 antibody, the predominant cardiac myocyte population showed little or no reactivity to this antibody, whereas a small population of the myocytes were strongly reactive. The myosin ATPase staining reaction of the positive myocyte population was significantly less pronounced than that of the V3-negative population which showed a strong reaction. The staining pattern changed dramatically after exposure of cultured myocytes to thyroid hormone for 7 days. Most of the cells were found to react strongly with anti-V1 antibody, while some cells showed little reactivity and some were not stained at all. A small number of cardiac myocytes in this culture showed little or no reactivity to anti-V1 antibody but were strongly reactive to anti-V3 antibody. The predominant anti-V1-positive myocyte population exhibited strong myosin ATPase staining as compared to a smaller V3-positive myocyte population which showed very weak staining. The cytochemical results of ATPase staining in cardiac myocytes agreed well with ATPase activity as determined on pyrophosphate gels containing isomyosin derived from cultured cardiac myocytes with or without T4. This study has demonstrated that cultured myocytes contain a small population of muscle cells which is not responsive to thyroid hormone or to the lack of it.  相似文献   

13.
Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis. hsp70 has been reported to act in some situations upstream or downstream of caspase activation, and its protective effects have been said to be either dependent on or independent of its ability to inhibit JNK activation. Purified hsp70 has been shown to block procaspase processing in vitro but is unable to inhibit the activity of active caspase 3. Since some aspects of hsp70 function can occur in the absence of its chaperone activity, we examined whether hsp70 lacking its ATPase domain or the C-terminal EEVD sequence that is essential for peptide binding was required for the prevention of apoptosis. We generated stable cell lines with tetracycline-regulated expression of hsp70, hsc70, and chaperone-defective hsp70 mutants lacking the ATPase domain or the C-terminal EEVD sequence or containing AAAA in place of EEVD. Overexpression of hsp70 or hsc70 protected cells from heat shock-induced cell death by preventing the processing of procaspases 9 and 3. This required the chaperone function of hsp70 since hsp70 mutant proteins did not prevent procaspase processing or provide protection from apoptosis. JNK activation was inhibited by both hsp70 and hsc70 and by each of the hsp70 domain mutant proteins. The chaperoning activity of hsp70 is therefore not required for inhibition of JNK activation, and JNK inhibition was not sufficient for the prevention of apoptosis. Release of cytochrome c from mitochondria was inhibited in cells expressing full-length hsp70 but not in cells expressing the protein with ATPase deleted. Together with the recently identified ability of hsp70 to inhibit cytochrome c-mediated procaspase 9 processing in vitro, these data demonstrate that hsp70 can affect the apoptotic pathway at the levels of both cytochrome c release and initiator caspase activation and that the chaperone function of hsp70 is required for these effects.  相似文献   

14.
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.  相似文献   

15.
Individuals with mutations in the WRN gene suffer from Werner syndrome, a disease with early onset of many characteristics of normal aging. The WRN protein (WRNp) functions in DNA metabolism, as the purified polypeptide has both 3′→5′ helicase and 3′→5′ exonuclease activities. In this study, we have further characterized WRNp exonuclease activity by examining its ability to degrade double-stranded DNA substrates containing abnormal and damaged nucleo­tides. In addition, we directly compared the 3′→5′ WRNp exonuclease activity with that of exo­nuclease III and the Klenow fragment of DNA polymerase I. Our results indicate that the presence of certain abnormal bases (such as uracil and hypoxanthine) does not inhibit the exonuclease activity of WRNp, exo­nuclease III or Klenow, whereas other DNA modifications, including apurinic sites, 8-oxoguanine, 8-oxoadenine and cholesterol adducts, inhibit or block WRNp. The ability of damaged nucleo­tides to inhibit exonucleolytic digestion differs significantly between WRNp, exonuclease III and Klenow, indicating that each exonuclease has a distinct mechanism of action. In addition, normal and modified DNA substrates are degraded similarly by full-length WRNp and an N-terminal fragment of WRNp, indicating that the specificity for this activity lies mostly within this region. The biochemical and physiological significance of these results is discussed.  相似文献   

16.
Y M Galante  S Y Wong  Y Hatefi 《Biochemistry》1981,20(9):2671-2678
Mitochondrial ATPase inhibitor protein (IF1) reacts reversibly with complex V and inhibits up to 90% of its ATPase activity. Both the rate and extent of inhibition are pH and temperature dependent and increase as the pH is lowered from pH 8 tp 6.7 (the lowest pH examined) or as the temperature is increased from 4 to 36 degrees C. Nucleotide triphosphates plus Mg2+ ions are required for inhibition of complex V ATPase activity by IF1. In the presence of Mg2+ ions, the effectiveness order of nucleotides is ATP greater than ITP greater than GTP greater than UTP. Highly purified complex V, which requires added phospholipids for expressing ATPase and ATP-Pi exchange activities, cannot be inhibited by IF1 plust ATP-Mg2+ unless phospholipids are also added. This indicates that the active state of the enzyme is necessary for the IF1 effect to be manifested, because F1-ATPase, which does not contain nor require phospholipids for catalyzing ATP hydrolysis, can be inhibited by IF1 plus ATP-Mg2+ in the absence of added phospholipids. The IF1-inhibited complex V, but not IF1-inhibited F1-ATPase, can be reactivated by incubation at pH greater than 7.0 in the absence of ATP-Mg2+. The reactivation rate is pH dependent and is influenced by temperature and enzyme concentration. Complex V preparations contain small and variable amounts of IF1. This endogenous IF1 behaves the same as added IF1 with respect to conditions described above for inhibition and reactivation and can result in 25-50% inhibition in different complex V preparations. However, complex V lacking endogenous IF1 can be reconstituted from F0, F1, oligomycin sensitivity conferring protein, and phospholipids. Inhibition of this reconstituted preparation in the presence of ATP-Mg2+ depends entirely on addition of IF1. In general, the ATP-Pi exchange activity of complex V is more sensitive to the chemical inhibitors of F1-AtPase tha its ATPase activity. This is not so, however, for IF1. Under conditions that IF1 caused approximately 75% inhibition of ATPase activity of complex V, no more than 10% of the ATP-Pi exchange activity was inhibited.  相似文献   

17.
Amino acid and β-galactoside transport activity catalyzed by whole cells and membrane vesicles prepared from an Escherichia coli mutant uncoupled for oxidative phosphorylation is comparable to the activity of analogous preparations from the parent strain. Valinomycin-induced rubidium uptake is also similar in membrane vesicles prepared from wild-type and mutant cells. The properties of the transport systems in mutant vesicles are the same as those of wild-type vesicles with respect to electron donors which stimulate transport, and with respect to inhibition by anoxia, cyanide, and 2,4-dinitrophenol.Magnesium ion markedly stimulates the ATPase activity of wild-type membrane vesicles and ethylenediaminetetraacetate markedly inhibits. However, these compounds have relatively slight effects on either the initial rate or extent of transport. Dicyclohexylcarbodiimide does not inhibit respiration-dependent transport despite inhibition of the calcium, magnesium-activated ATPase activity of wild-type vesicles.These results confirm earlier observations indicating that oxidative phosphorylation is not involved in respiration-linked active transport.  相似文献   

18.
Inhibition of protein kinase C by annexin V.   总被引:11,自引:0,他引:11  
Annexin V is a protein of unknown biological function that undergoes Ca(2+)-dependent binding to phospholipids located on the cytosolic face of the plasma membrane. Preliminary results presented herein suggest that a biological function of annexin V is the inhibition of protein kinase C (PKC). In vitro assays showed that annexin V was a specific high-affinity inhibitor of PKC-mediated phosphorylation of annexin I and myosin light chain kinase substrates, with half-maximal inhibition occurring at approximately 0.4 microM. Annexin V did not inhibit epidermal growth factor receptor/kinase phosphorylation of annexin I or cAMP-dependent protein kinase phosphorylation of the Kemptide peptide substrate. Since annexin V purified from both human placenta and recombinant bacteria inhibited protein kinase C activity, it is not likely that the inhibitor activity was associated with a minor contaminant of the preparations. The following results indicated that the mechanism of inhibition did not involve annexin V sequestration of phospholipid that was required for protein kinase C activation: similar inhibition curves were observed as phospholipid concentration was varied from 0 to 800 micrograms/mL; the extent of inhibition was not significantly affected by the order of addition of phospholipid, substrate, or PKC, and the core domain of annexin I was not a high-affinity inhibitor of PKC even though it had similar Ca2+ and phospholipid binding properties as annexin V. These data indirectly indicate that inhibition occurred by direct interaction between annexin V and PKC. Since the concentration of annexin V in many cell types exceeds the amounts required to achieve PKC inhibition in vitro, it is possible that annexin V inhibits PKC in a biologically significant manner in intact cells.  相似文献   

19.
A DNA duplex covalently cross-linked between specific bases has been prepared. This and similar duplexes are substrates for the polymerase and exonuclease activities of the Klenow fragment of Escherichia coli DNA polymerase I and T4 and T7 DNA polymerases. The action of Klenow fragment on these duplexes indicates that the polymerase site does not require that the DNA duplex undergo strand separation for activity, whereas the exonuclease site requires that at least four base pairs of the primer strand must melt out for the exonucleolytic removal of nucleotides from the primer terminus. The exonucleolytic action of T4 and T7 DNA polymerases requires that only two and three bases respectively melt out for excision of nucleotides from the primer terminus. Klenow fragment and T4 DNA polymerase are able to polymerize onto duplexes incapable of strand separation, whereas T7 DNA polymerase seems to require that the primer terminus be at least three bases from the cross-linked base pair. A DNA duplex with a biotin covalently linked to a specific base has been prepared. In the presence of the biotin binding protein avidin, the exonucleolytic activity of Klenow fragment requires that the primer terminus be at least 15 base pairs downstream from the base with the biotin-avidin complex. On the other hand, the polymerase activity of Klenow fragment required that the primer terminus be at least six base pairs downstream from the base with the biotin-avidin complex. These results suggest that the polymerase and exonuclease sites of Klenow are physically separate in solution and exhibit different substrate structural requirements for activity.  相似文献   

20.
We have characterized the effect of a stable small molecule isolated from bovine hypothalamus (Haupert, G. T., and Sancho, J. M. (1979) Proc. Natl. Acad. Sci. 76, 4658-4660) on mammalian (Na,K)ATPase. This hypothalamus-derived inhibitory factor, HIF, has been shown to inhibit ATPase activity of purified dog kidney enzyme reversibly with high affinity (Haupert, G. T., Carilli, C. T., and Cantley, L. C. (1984) Am. J. Physiol. 247, F919-F924). In this report it is shown that HIF inhibits the ouabain sensitive component of 86Rb+ uptake into human red blood cells. HIF also inhibited (Na,K)ATPase activity of unsealed red cell membranes but not that of sealed inside-out vesicles, indicating that HIF is impermeant to red cell membranes and inhibits the (Na,K)ATPase from the extracellular side. In unsealed human red cell membranes, concentrations of HIF which caused 70% inhibition of the (Na,K)ATPase did not inhibit ATP hydrolysis by plasma membrane (Ca2+)ATPase or (Mg2+)ATPase. However, at a similar concentration, HIF was shown to inhibit rabbit muscle sarcoplasmic reticulum (Ca2+)ATPase. HIF also inhibited p-nitrophenylphosphatase activity of unmodified or fluorescein-5'-iso-thiocyanate labeled dog kidney (Na,K)ATPase. As judged by fluorescein fluorescence of the modified enzyme, HIF stabilized the low fluorescent "E2" conformation of the enzyme similar to that stabilized by ouabain. However, unlike ouabain, HIF blocked covalent phosphorylation of dog kidney (Na,K)ATPase by inorganic phosphate. These studies show that HIF is an inhibitor of (Na,K)ATPase which acts from the extracellular side of the membrane by a mechanism similar to but not identical to that of cardiac glycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号