首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both blood vessels and nerves are guided to their target. Vascular endothelial growth factor (VEGF)A is a key signal in the induction of vessel growth (a process termed angiogenesis). Though initial studies, now a decade ago, indicated that VEGF is an endothelial cell-specific factor, more recent findings revealed that VEGF also has direct effects on neural cells. Genetic studies showed that mice with reduced VEGF levels develop adult-onset motor neuron degeneration, reminiscent of the human neurodegenerative disorder amyotrophic lateral sclerosis (ALS). Additional genetic studies confirmed that VEGF is a modifier of motor neuron degeneration in humans and in SOD1(G93A) mice--a model of ALS. Reduced VEGF levels may promote motor neuron degeneration by limiting neural tissue perfusion and VEGF-dependent neuroprotection. VEGF also affects neuron death after acute spinal cord or cerebral ischemia, and has also been implicated in other neurological disorders such as diabetic and ischemic neuropathy, nerve regeneration, Parkinson's disease, Alzheimer's disease and multiple sclerosis. These findings have raised growing interest in assessing the therapeutic potential of VEGF for neurodegenerative disorders.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting from motor neuron loss in the spinal cord and brain stem. In the present study, we found that systemic administration of recombinant vascular endothelial growth factor (VEGF) significantly diminished astrogliosis and increased the number of neuromuscular junctions in a Cu/Zn superoxide dismutase (SOD1) transgenic mouse model of ALS. Our results thus demonstrate a novel regulatory role of VEGF on astrocytes and are suggestive of protective effects of VEGF both in the peripheral and central nervous system in the SOD1 transgenic mouse model. These findings warrant further evaluation of the mechanism(s) of regulatory effects of VEGF on neuronal and non-neuronal cells, and the relation of these events to motor neuron degeneration and the onset and progression of ALS.  相似文献   

3.
4.
Induction of motor neuron apoptosis by free 3-nitro-L-tyrosine   总被引:1,自引:0,他引:1  
Peroxynitrite-dependent tyrosine nitration has been postulated to be involved in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Evidence supporting this supposition includes the appearance of both free and protein-linked 3-nitro-l-tyrosine (nitrotyrosine) in both sporadic and familial ALS, as well as of increased free nitrotyrosine levels in the spinal cord of transgenic mice expressing ALS-linked superoxide dismutase mutants at symptom onset. Here we demonstrate that incubation with clinically relevant concentrations of nitrotyrosine induced apoptosis in motor neurons cultured with trophic factors. Nitrotyrosine was bound to proteins, but it was not incorporated into alpha-tubulin, as previously demonstrated for other cell types. Neither inhibition of nitric oxide production nor scavenging of superoxide and peroxynitrite prevented increases in cell nitrotyrosine immunoreactivity or motor neuron death, suggesting that these effects are not due to the endogenous formation of reactive nitrogen species. In contrast, some populations of astrocytes incorporated nitrotyrosine into alpha-tubulin, but free nitrotyrosine had no effect on the viability and phenotype of astrocytes in culture, as evaluated by glial fibrillary acidic protein immunoreactivity, cell growth and morphology. Co-culture of motor neurons on astrocyte monolayers delayed, but did not prevent, nitrotyrosine-induced motor neuron death. These results suggest that free nitrotyrosine may play a role in the induction of motor neuron apoptosis in ALS.  相似文献   

5.
There is a desperate need for targeted therapeutic interventions that slow the progression of amyotrophic lateral sclerosis (ALS). ALS is a disorder with heterogeneous onset, which then leads to common final pathways involving multiple neuronal compartments that span both the central and peripheral nervous system. It is believed that excitotoxic mechanisms might play an important role in motor neuron death in ALS. However, little is known about the mechanisms by which excitotoxicity might lead to the neuromuscular junction degeneration that characterizes ALS, or about the site at which this excitotoxic cascade is initiated. Using a novel compartmentalised model of site-specific excitotoxin exposure in lower motor neurons in vitro, we found that spinal motor neurons are vulnerable to somatodendritic, but not axonal, excitotoxin exposure. Thus, we developed a model of somatodendritic excitotoxicity in vivo using osmotic mini pumps in Thy-1-YFP mice. We demonstrated that in vivo cell body excitotoxin exposure leads to significant motor neuron death and neuromuscular junction (NMJ) retraction. Using confocal real-time live imaging of the gastrocnemius muscle, we found that NMJ remodelling preceded excitotoxin-induced NMJ degeneration. These findings suggest that excitotoxicity in the spinal cord of individuals with ALS might result in a die-forward mechanism of motor neuron death from the cell body outward, leading to initial distal plasticity, followed by subsequent pathology and degeneration.KEY WORDS: Motor neuron disease, Amyotrophic lateral sclerosis, Excitotoxicity, Lower motor neuron, Excitotoxin exposure  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is an age-related, fatal motor neuron degenerative disease occurring both sporadically (sALS) and heritably (fALS), with inherited cases accounting for approximately 10% of diagnoses. Although multiple mechanisms likely contribute to the pathogenesis of motor neuron injury in ALS, recent advances suggest that oxidative stress may play a significant role in the amplification, and possibly the initiation, of the disease. Lipid peroxidation is one of the several outcomes of oxidative stress. Since the central nervous system (CNS) is enriched with polyunsaturated fatty acids, it is particularly vulnerable to membrane-associated oxidative stress. Peroxidation of cellular membrane lipids or circulating lipoprotein molecules generates highly reactive aldehydes, among which is 4-hydroxy-2-nonenal (HNE). HNE levels are increased in spinal cord motor neurons of ALS patients, indicating that lipid peroxidation is associated with the motor neuron degeneration in ALS. In the present study, we used a parallel proteomic approach to identify HNE-modified proteins in the spinal cord tissue of a model of fALS, G93A-SOD1 transgenic mice, in comparison to the nontransgenic mice. We found three significantly HNE-modified proteins in the spinal cord of G93A-SOD1 transgenic mice: dihydropyrimidinase-related protein 2 (DRP-2), heat-shock protein 70 (Hsp70), and possibly alpha-enolase. These results support the role of oxidative stress as a major mechanism in the pathogenesis of ALS. Structural alteration and activity decline of functional proteins may consistently contribute to the neurodegeneration process in ALS.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. Despite the fact that many different therapeutic strategies have been applied to prevent disease progression, no cure or effective therapy is currently available for ALS. We found that l-arginine protects cultured motor neurons from excitotoxic injury. We also found that l-arginine supplementation both prior to and after the onset of motor neuron degeneration in mtSOD1 (G93A) transgenic ALS mice significantly slowed the progression of neuropathology in lumbar spinal cord, delayed onset of motor dysfunction, and prolonged life span. Moreover, l-arginine treatment was associated with preservation of arginase I activity and neuroprotective polyamines in spinal cord motor neurons. Our findings show that l-arginine has potent in vitro and in vivo neuroprotective properties and may be a candidate for therapeutic trials in ALS.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by selective motor neuron degeneration. Abnormal protein aggregation and impaired protein degradation pathways may contribute to the disease pathogenesis. Although it has been reported that autophagy is altered in patients and animal model of ALS, little is known about the role of autophagy in motor neuron degeneration in this disease. Our previous study shows that rapamycin, an MTOR-dependent autophagic activator, accelerates disease progression in the SOD1G93A mouse model of ALS. In the present report, we have assessed the role of the MTOR-independent autophagic pathway in ALS by determining the effect of the MTOR-independent autophagic inducer trehalose on disease onset and progression, and on motor neuron degeneration in SOD1G93A mice. We have found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice. Most importantly, we have documented that trehalose decreases SOD1 and SQSTM1/p62 aggregation, reduces ubiquitinated protein accumulation, and improves autophagic flux in the motor neurons of SOD1G93A mice. Moreover, we have demonstrated that trehalose can reduce skeletal muscle denervation, protect mitochondria, and inhibit the proapoptotic pathway in SOD1G93A mice. Collectively, our study indicated that the MTOR-independent autophagic inducer trehalose is neuroprotective in the ALS model and autophagosome-lysosome fusion is a possible therapeutic target for the treatment of ALS.  相似文献   

9.
《Autophagy》2013,9(4):588-602
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by selective motor neuron degeneration. Abnormal protein aggregation and impaired protein degradation pathways may contribute to the disease pathogenesis. Although it has been reported that autophagy is altered in patients and animal model of ALS, little is known about the role of autophagy in motor neuron degeneration in this disease. Our previous study shows that rapamycin, an MTOR-dependent autophagic activator, accelerates disease progression in the SOD1G93A mouse model of ALS. In the present report, we have assessed the role of the MTOR-independent autophagic pathway in ALS by determining the effect of the MTOR-independent autophagic inducer trehalose on disease onset and progression, and on motor neuron degeneration in SOD1G93A mice. We have found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice. Most importantly, we have documented that trehalose decreases SOD1 and SQSTM1/p62 aggregation, reduces ubiquitinated protein accumulation, and improves autophagic flux in the motor neurons of SOD1G93A mice. Moreover, we have demonstrated that trehalose can reduce skeletal muscle denervation, protect mitochondria, and inhibit the proapoptotic pathway in SOD1G93A mice. Collectively, our study indicated that the MTOR-independent autophagic inducer trehalose is neuroprotective in the ALS model and autophagosome-lysosome fusion is a possible therapeutic target for the treatment of ALS.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of motor neurons, axon degeneration, and denervation of neuromuscular junctions (NMJ). Here we show that death receptor 6 (DR6) levels are elevated in spinal cords from post-mortem samples of human ALS and from SOD1G93A transgenic mice, and DR6 promotes motor neuron death through activation of the caspase 3 signaling pathway. Blocking DR6 with antagonist antibody 5D10 promotes motor neuron survival in vitro via activation of Akt phosphorylation and inhibition of the caspase 3 signaling pathway, after growth factor withdrawal, sodium arsenite treatment or co-culture with SOD1G93A astrocytes. Treatment of SOD1G93A mice at an asymptomatic stage starting on the age of 42 days with 5D10 protects NMJ from denervation, decreases gliosis, increases survival of motor neurons and CC1+ oligodendrocytes in spinal cord, decreases phosphorylated neurofilament heavy chain (pNfH) levels in serum, and promotes motor functional improvement assessed by increased grip strength. The combined data provide clear evidence for neuroprotective effects of 5D10. Blocking DR6 function represents a new approach for the treatment of neurodegenerative disorders involving motor neuron death and axon degeneration, such as ALS.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration.  相似文献   

12.
VEGF (vascular endothelial growth factor) prevents neuronal death in different models of ALS (amyotrophic lateral sclerosis), but few studies have addressed the efficacy of VEGF to protect motor neurons after the onset of symptoms, a critical point when considering VEGF as a potential therapeutic target for ALS. We studied the capability of VEGF to protect motor neurons after an excitotoxic challenge in two models of spinal neurodegeneration in rats induced by AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) administered either chronically with osmotic minipumps or acutely by microdialysis. VEGF was administered through osmotic minipumps in the chronic model or injected intracerebroventricularly in the acute model, and its effects were assessed by immunohistochemical and histological analyses and motor performance tests. In the chronic model, VEGF stopped the progression of the paralysis and protected motor neurons when administered after AMPA before the onset of the motor symptoms, whereas no protection was observed when administered after the onset. VEGF was also protective in the acute model, but with a short time window, since the protection was effective when administered 1 h but not 2 h after AMPA. Our results indicate that while VEGF has an indubitable neuroprotective effect, its therapeutic potential for halting or delaying the progression of motor neuron loss in ALS would likely have a short effective time frame.  相似文献   

13.
Since Charcot recognized the devastating disorder amyotrophic lateral sclerosis (ALS) in 1874, many theories have been proposed to explain its pathogenesis, but it remains as deadly and incurable as ever. Three years ago it was reported that reduced levels of vascular endothelial growth factor (VEGF) caused ALS-like motoneuron degeneration in mice. Recent evidence indicates that insufficient VEGF is also a risk factor for ALS in humans. Although VEGF was once considered to be only a specific angiogenic factor, emerging evidence indicates that it also displays important neuroprotective activity. These insights have primed widespread interest in developing VEGF-based therapies for (moto)neuron degenerative disorders, raising new hope for the treatment of ALS and other neurodegenerative diseases.  相似文献   

14.
Mice homozygous for the spontaneous motor neuron degeneration mutation (mnd) show at the age of 8 months a marked impairment of the motor function and accumulation of lipofuscin granules in the cytoplasm of almost all neurons of the central nervous system.We previously reported a significant increase in GFAP protein levels in the lumbar spinal cord homogenates by western blot analysis and upregulation of TNF, a proinflammatory cytokine, in the motor neurons of lumbar spinal cord of mnd mice, already in a presymptomatic stage (4 months of age). In the present study, using immunohistochemical analysis, we performed a time course in mnd mice (1, 4 and 9 months of age) evaluating the expression and the distribution of astroglial and microglial cells and the expression of both TNF receptors, TNFR-I and TNFR-II. We observed a marked increase in astroglial and microglial cells and in TNFR-I immunoreactivity already at the 4th month. Since motor neuron dysfunction occurs in mnd mice in the absence of evident loss of spinal motor neurons, the present results indicate that the activation of microglial cells and astrocytes is independent from neuronal degeneration. The role of TNF and TNFR-I on motor neurons is still to be demonstrated.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motor neurons. Recent studies have implicated that chronic hypoxia and insufficient vascular endothelial growth factor (VEGF)-dependent neuroprotection may lead to the degeneration of motor neurons in ALS. Expression of apelin, an endogenous ligand for the G protein-coupled receptor APJ, is regulated by hypoxia. In addition, recent reports suggest that apelin protects neurons against glutamate-induced excitotoxicity. Here, we examined whether apelin is an endogenous neuroprotective factor using SOD1(G93A) mouse model of ALS. In mouse CNS tissues, the highest expressions of both apelin and APJ mRNAs were detected in spinal cord. APJ immunoreactivity was observed in neuronal cell bodies located in gray matter of spinal cord. Although apelin mRNA expression in the spinal cord of wild-type mice was not changed from 4 to 18 weeks age, that of SOD1(G93A) mice was reduced along with the paralytic phenotype. In addition, double mutant apelin-deficient and SOD1(G93A) displayed the disease phenotypes earlier than SOD1(G93A) littermates. Immunohistochemical observation revealed that the number of motor neurons was decreased and microglia were activated in the spinal cord of the double mutant mice, indicating that apelin deficiency pathologically accelerated the progression of ALS. Furthermore, we showed that apelin enhanced the protective effect of VEGF on H(2)O(2)-induced neuronal death in primary neurons. These results suggest that apelin/APJ system in the spinal cord has a neuroprotective effect against the pathogenesis of ALS.  相似文献   

16.
We have previously shown that knockout of fibroblast growth factor-2 (FGF-2) and potential compensatory effects of other growth factors result in amelioration of disease symptoms in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive neurological disorder leading to degeneration of cortical, brain stem, and spinal motor neurons followed by subsequent denervation and muscle wasting. Mutations in the superoxide dismutase 1 (SOD1) gene are responsible for approximately 20% of familial ALS cases and SOD1 mutant mice still are among the models best mimicking clinical and neuropathological characteristics of ALS. The aim of the present study was a thorough characterization of FGF-2 and other growth factors and signaling effectors in vivo in the SOD1G93A mouse model. We observed tissue-specific opposing gene regulation of FGF-2 and overall dysregulation of other growth factors, which in the gastrocnemius muscle was associated with reduced downstream extracellular-signal-regulated kinases (ERK) and protein kinase B (AKT) activation. To further investigate whether the effects of FGF-2 on motor neuron death are mediated by glial cells, astrocytes lacking FGF-2 were cocultured together with mutant SOD1 G93A motor neurons. FGF-2 had an impact on motor neuron maturation indicating that astrocytic FGF-2 affects motor neurons at a developmental stage. Moreover, neuronal gene expression patterns showed FGF-2- and SOD1 G93A-dependent changes in ciliary neurotrophic factor, glial-cell-line-derived neurotrophic factor, and ERK2, implying a potential involvement in ALS pathogenesis before the onset of clinical symptoms.  相似文献   

17.
Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motor neurons starting in adulthood. Most of our knowledge about the pathophysiological mechanisms of ALS comes from transgenic mice models that emulate a subgroup of familial ALS cases (FALS), with mutations in the gene encoding superoxide dismutase (SOD1). In the more than 15 years since these mice were generated, a large number of abnormal cellular mechanisms underlying motor neuron degeneration have been identified, but to date this effort has led to few improvements in therapy, and no cure. Here, we consider that this surfeit of mechanisms is best interpreted by current insights that suggest a very early initiation of pathology in motor neurons, followed by a diversity of secondary cascades and compensatory mechanisms that mask symptoms for decades, until trauma and/or aging overloads their protective function. This view thus posits that adult‐onset ALS is the consequence of processes initiated during early development. In fact, motor neurons in neonatal mutant SOD mice display important alterations in their intrinsic electrical properties, synaptic inputs and morphology that are accompanied by subtle behavioral abnormalities. We consider evidence that human mutant SOD1 protein in neonatal hSOD1G93A mice instigates motor neuron degeneration by increasing persistent sodium currents and excitability, in turn altering synaptic circuits that control excessive motor neuron firing and leads to excitotoxicity. We also discuss how therapies that are aimed at suppressing abnormal neuronal activity might effectively mitigate or prevent the onset of irreversible neuronal damage in adulthood. J. Cell. Biochem. 113: 3301–3312, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Myelinating glia cells support axon survival and functions through mechanisms independent of myelination, and their dysfunction leads to axonal degeneration in several diseases. In amyotrophic lateral sclerosis (ALS), spinal motor neurons undergo retrograde degeneration, and slowing of axonal transport is an early event that in ALS mutant mice occurs well before motor neuron degeneration. Interestingly, in familial forms of ALS, Schwann cells have been proposed to slow disease progression. We demonstrated previously that Schwann cells transfer polyribosomes to diseased and regenerating axons, a possible rescue mechanism for disease-induced reductions in axonal proteins. Here, we investigated whether elevated levels of axonal ribosomes are also found in ALS, by analysis of a superoxide dismutase 1 (SOD1)G93A mouse model for human familial ALS and a patient suffering from sporadic ALS. In both cases, we found that the disorder was associated with an increase in the population of axonal ribosomes in myelinated axons. Importantly, in SOD1G93A mice, the appearance of axonal ribosomes preceded the manifestation of behavioral symptoms, indicating that upregulation of axonal ribosomes occurs early in the pathogenesis of ALS. In line with our previous studies, electron microscopy analysis showed that Schwann cells might serve as a source of axonal ribosomes in the disease-compromised axons. The early appearance of axonal ribosomes indicates an involvement of Schwann cells early in ALS neuropathology, and may serve as an early marker for disease-affected axons, not only in ALS, but also for other central and peripheral neurodegenerative disorders.  相似文献   

20.
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号