首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water collected on the spring equatorial Pacific Joint GlobalOcean Flux Study (JGOFS) was placed in ultra-clean bottles inan incubator on deck under the direction of the team of J.H.Martin.Half of the bottles were enriched with 2.53 mM iron; the otherhalf served as controls. Cell counts increased, while the numberof species was reduced, in both the controls and the treatedsamples over the period of the experiment. Diatoms dominated,and after an early growth spurt in the Fe-enriched bottles,most diatom species showed greater growth in the controls atthe end of the 6 day experiment. However, as the experimentwas terminated, more cells overall were noted in the Fe-enrichedsamples, with the most abundant diatom, Cylindrotheca closterium.principally responsible for the difference. Growth rates werehigh in both the controls and the treated samples, with overallrates of 1.3–3.0 divisions day–1 in the Fe-treatedsamples and 1.9–3.4 divisions day–1 in the controls.The group of smaller pennate diatoms averaged 2.9 divisionsday–1 in the Fe-treated samples and 3.3 divisions day–1in the controls over the entire experiment.  相似文献   

2.
Previously unidentified barnacles (Cirripedia: Thoracica) that were collected during the ninth cruise of the R/V Akademik Mstislav Keldysh in the equatorial zone of the East Pacific Ocean from depths of 1422–1490 m are examined. The following species were found in two samples we studied: Amigdoscalpellum costellatum, A. elegans, Arcoscalpellum michelottianum, Annandaleum gruvelii gruvelii, Cristallinaverruca allisoni, and Metaverruca recta. These species are described, illustrated, and compared to the published data. This study extends the previously known areas of distribution of some species and adds further data on their morphology.  相似文献   

3.
Polycystine radiolaria from ODP Hole 677A in the eastern equatorialPacific were examined at isotopically identified Early Pleistoceneglacial maxima and minima. Two distinct radiolarian assemblagesare recognized, characterizing glacial and interglacial optima.The Glacial Assemblage is characterized by high abundances ofTheocalyptra davisiana, Botryostrobus auritus, Anthocyrtidiumzanguebaricuim andHexacontium enthacanthum. The InterglacialAssemblage is characterized by Tetrapyle octacantha, Octapylestenozoa and Theocorythium vetulum. A comparison of these fossilassemblages with modern radiolarian distribution suggests thatthe Glacial Assemblage represents intensified upwelling of coldadvected water via the Eastern Pacific Boundary Current, whilstthe Interglacial Assemblage indicates climatic ameliorationin the eastern equatorial Pacific, with the prevalence of warm(>21C) tropical/subtropical surface waters. The recognitionof these radiolarian assemblages could be successfully appliedto studies of adjacent east Pacific areas where other palaeoecologicalindicators are lacking.  相似文献   

4.
Seabird associations in Pacific equatorial waters   总被引:2,自引:0,他引:2  
Seabirds were counted along the same cruise tracks in the eastern tropical Pacific (10°øN-10°øS and 140°ø-90°øW) each spring and autumn for 8 years, 1984–1991. During spring, three species groups were apparent among eight species seen in five or more years: (1) Leach's Storm-petrel Oceanodroma leucorhoa and Wedge-rumped Storm-petrel Oceanodroma tethys , which feed on neuston by surface seizing; (2) Black-winged Petrel Pterodroma nigripennis and White-winged Petrel Pterodroma leucoptera , which feed on neuston and micronekton by surface seizing; (3) Juan Fernandez Petrel Pterodroma externa , Wedge-tailed Shearwater Puffinus pacificus and Sooty Tern Sterna fuscata , which feed on micronekton driven to the surface by foraging tuna. During autumn, only one group was identified from the seven species seen in five or more years: Leach's Storm-petrel associated with either Wedge-rumped Storm-petrel or Juan Fernandez Petrel and/or White-winged Petrel. Annual variability in assemblage composition was more extreme in the autumn and thus was similar to variation in physical and biological factors linked to the El Niño-Southern Oscillation cycle.  相似文献   

5.
6.

Background

Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 µm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone.

Methodology/Principal Findings

In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated.

Conclusions/Significance

Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups.  相似文献   

7.
Stable isotope results from seven Miocene Deep Sea Drilling Projects in the equatorial and southwest Pacific Ocean, previously correlated using carbon isotope stratigraphy, have been examined, discussed, and interpreted in terms of the development of the Miocene Pacific Ocean. The most obvious features of the benthonic foraminiferal stable isotopic records are a major increase inδ18O(~1.0‰) during the Middle Miocene, a series of long-term oscillations (2–3 My) of amplitude 0.5–0.75‰ and a decrease inδ13C values (0.5–;1.0‰) during the latest Miocene. Planktonic foraminiferalδ18O records show different trends for high and low latitude regions. In the equatorial Pacific, planktonicδ18O values actually decrease during the Miocene whereas in the higher southern latitudes planktonicδ18O values become more positive in response to cooling surface waters.Planktonicδ13C records show opposite trends toδ18O with the high latitude values becoming more negative relative to the tropical regions. The development of the Miocene Pacific Ocean in terms of its vertical and horizontal thermal structure and isotopic composition is well illustrated by examining changes in the isotopic difference between planktonic and benthonic foraminifera.Δδ18OB-P (Benthonic-Planktonic) is a measure of the thermal structure of the water column.Δδ18OPH-PL (high latitude-low latitude) planktonic values is a measure of the latitudinal temperature gradient.Δδ13CB-P is an indirect measure of nutrient concentrations in the water column, andΔδ13CPH-PL measures differences in surface-water nutrient concentrations between high and low latitude.Δδ18OB-P increases during the Miocene with the greatest increase occurring in the Middel Miocene at about 14 Ma. By the latest Miocene the isotopic gradient at Site 289 in the equatorial Pacific approaches the present-day isotopic gradient (about 4–5‰). An increase inΔδ18OPH-PL during the Miocene suggests that the latitudinal temperature gradient increased by about 6°C to a value of 12°C in the latest Miocene between Sites 289 (Equator) and 281 (subantarctic).Δδ13CB-P and Δδ13CPH-PL values are relatively constant through the Early Miocene but begin to increase during the Middle Miocene. Bottom-waterδ13C values respond similarly at all sites, but surface-waterδ13C values exhibit different trends because higher latitude values begin to decrease. This decrease perhaps suggests that phosphate concentrations may have increased due to increased upwelling as the circum-Antarctic circulation system evolved its present day characteristics.The isotopic data compiled in this paper suggest that the southwest Pacific was responding uniformly to some global or at least Pacific-wide control during the Early Miocene. In the Middle Miocene the response became more complex as the low and high latitudes began to show independent trends. The changes in the thermal (vertical and latitudinal) structure probably occurred in respons to the build-up of the East Antarctic ice-sheet, intensification of bottom-water circulation and an increase in zonal circulation in surface waters in the southern hemisphere.The changes inδ13C (vertical and latitudinal) gradients are due to some complex interaction of sea-level, continental hypsometry, climate, and biological processes coupled with oceanic circulation changes. A strong correlation between estimated sea-level changes andδ13C values suggests that transgressions and regressions play a critical role in controlling the flux of oxidized organic carbon enriched in12C, from the continental shelves and epicontinental seas to the open ocean.  相似文献   

8.
The community structure and diversity of anaerobic ammonium oxidation (anammox) bacteria in the surface sediments of equatorial Pacific were investigated by phylogenic analysis of 16S rRNA and hydrazine oxidoreductase (hzo) genes and PCoA (principal coordinates analysis) statistical analysis. Results indicated that 16S rRNA and hzo sequences in the P2 (off the center of western Pacific warm pool) and P3 (in the eastern equatorial Pacific) sites all belong to the Candidatus “Scalindua”, the dominate anammox bacteria in the low-temperature marine environment proved by previous studies. However, in the P1 site (in center of warm pool of western Pacific), large part of 16S rRNA gene sequences formed a separated cluster. Meanwhile, hzo gene sequences from P1 sediment also grouped into a single cluster. PCoA analysis demonstrated that the anammox community structure in the P1 has significant geographical distributional difference from that of P2, P3, and other marine environments based on 16S rRNA and hzo genes. The abundances of anammox bacteria in surface sediments of equatorial Pacific were quantified by q-PCR analysis of hzo genes, which ranged from 3.98 × 103 to 1.17 × 104 copies g−1 dry sediments. These results suggested that a special anammox bacteria phylotypes exist in the surface sediment of the western Pacific warm pool, which adapted to the specific habitat and maybe involved in the nitrogen loss process from the fixed inventory in the habitat.  相似文献   

9.
 A review of the literature provides 92 estimates of the middle to late Holocene sea-level highstand on Pacific Islands. These data generally support geophysical model calculations that predict a +1 to 3 m relative sea-level highstand on oceanic islands due to the Earth’s rheological response to the melting of the last continental ice sheets and subsequent redistribution of meltwater. Both predictions and observations indicate sea level was higher than present in the equatorial Pacific between 5000 and 1500 y B.P. A non-linear relationship exists between the age and elevation of the highstand peak, suggesting that different rates of isostatic adjustment may occur in the Pacific, with the highest rates of sea-level fall following the highstand near the equator. It is important to resolve detailed sea-level histories from insular sites to test and refine models of climatic, oceanographic, and geophysical processes including hydroisostasy, equatorial ocean siphoning, and lithospheric flexure that are invoked as mechanisms affecting relative sea-level position. We use a select subset of the available database meeting specific criteria to examine model relationships of paleosea-surface topography. This new evaluated database of paleosea-level positions is also validated for testing and constraining geophysical model predictions of past and present sea-level variations. Accepted: 22 May 1998  相似文献   

10.
11.
Coccolith fluxes were investigated by sediment trap studies in the West Caroline Basin, which is located in the equatorial western Pacific. The investigation was conducted from June 1991 to March 1992 at two water depths, 1592 and 3902 m, as part of the Northwest Pacific Carbon Cycle Study (NOPACCS) program. Two seasonal maxima of coccolith fluxes were observed during September–early October and late December–January. The average coccolith and coccosphere fluxes at the depth of the shallow trap were 1800×106 coccoliths m−2 day−1 and 1.9×106 coccospheres m−2 day−1, respectively. The flux of coccoliths followed the same trend as the total flux, and was closely correlated with the flux of organic matter flux. Florisphaera profunda, Gladiolithus flabellatus, Gephyrocapsa oceanica, Umbilicosphaera sibogae var. sibogae, Emiliania huxleyi, and Oolithotus fragilis were the most abundant species together comprising more than 85% of the total flora. Observed seasonal changes of the species composition of coccolith flora, as well as analysis of the R-mode cluster, revealed that during the summer, the assemblage was marked by the dominance of G. oceanica and U. sibogae. However, during the winter, the assemblage was dominated by E. huxleyi and O. fragilis. These assemblage changes were influenced by monsoonal events, which were observed off the New Guinea coast. F. profunda dominated the community in the shallow trap throughout most of the year; peak values of this species were recorded during the winter. The coccosphere assemblage was dominated by G. oceanica at both water depths. In the deep trap, the sedimentation pattern was similar to that observed at the shallow depth. Mean coccolith and coccosphere fluxes at the deep trap were 2000×106 coccolith m−2 day−1 and 0.08×106 coccospheres m−2 day−1, respectively. The increase in coccolith flux with water depth suggests a lateral influx. The estimated average daily mass of CaCO3 flux in coccoliths and coccospheres was 16.6 mg m−2 day−1 at the 1592 m trap and 17.9 mg m−2 day−1 at the 3902 m trap, respectively. These calculated values contributed only 23.3% to the total CaCO3 flux at the shallow trap and 27.9% at the deep trap.  相似文献   

12.
The Coral Triangle encompasses an extensive region of coral reefs in the western tropical Pacific with marine resources that support millions of people. As in all other reef regions, coral reefs in the Coral Triangle have been impacted by anomalously high ocean temperature. The vast majority of bleaching observations to date have been associated with the 1998 La Niña phase of ENSO. To understand the significance of ENSO and other climatic oscillations to heat stress in the Coral Triangle, we use a 5‐km resolution Regional Ocean Model System for the Coral Triangle (CT‐ROMS) to study ocean temperature thresholds and variability for the 1960–2007 historical period. Heat‐stress events are more frequent during La Niña events, but occur under all climatic conditions, reflecting an overall warming trend since the 1970s. Mean sea surface temperature (SST) in the region increased an average of ~ 0.1 °C per decade over the time period, but with considerable spatial variability. The spatial patterns of SST and heat stress across the Coral Triangle reflect the complex bathymetry and oceanography. The patterns did not change significantly over time or with shifts in ENSO. Several regions experienced little to no heat stress over the entire period. Of particular interest to marine conservation are regions where there are few records of coral bleaching despite the presence of significant heat stress, such as in the Banda Sea. Although this may be due to under‐reporting of bleaching events, it may also be due to physical factors such as mixing and cloudiness, or biological factors that reduce sensitivity to heat stress.  相似文献   

13.
Four radiolarian assemblages have been defined in recent seafloor sediments of the equatorial Pacific Ocean. The distribution of these assemblages corresponds to the modern pattern of oceanic circulation and water mass structure in this region: the eastern Pacific shallow permanent thermocline and the Equatorial Undercurrent; Peru Current upwelling and the oxygen minimum; the subtropical water mass; warm western tropical water and the North Equatorial Countercurrent. In twelve cores chosen to transect the region both longitudinally and latitudinally, the distribution of these four assemblages has been reconstructed for six time-intervals during the last 127,000 years: 18,000 B.P. (glacial Stage 2); 36,000 B.P. and 52,000 B.P. (interstadial Stage 3); 65,000 B.P. (glacial Stage 4); 82,000 B.P. and 120,000 B.P. (interglacial Stage 5). Atmospheric and oceanic circulation changes through time have been inferred from the reconstructed microfossil assemblage distributions. Changes in assemblage distributions indicate that variations in intensity, direction and mean position of the tradewinds caused marked changes in the oceanic circulation patterns through the last glacial cycle.Near the end of interglacial Stage 5, the disappearance of the North Equatorial Countercurrent from the eastern Pacific suggests that the mean position of the tradewinds was shifted to the south approximately 5° of latitude relative to the modern position, so that the Northeast trades prevented the flow of the North Equatorial Countercurrent into the eastern Pacific. Near the end of interstadial Stage 3, a change in wind direction occurred from predominantly zonal winds, which enhance equatorial divergence and surfacing of the Equatorial Undercurrent, to more meridional winds, which enhance coastal upwelling associated with the Peru Current.In the tropical Pacific Ocean, late Quaternary changes in atmospheric and oceanic circulation are linked with times of continental ice sheet growth in the Northern Hemisphere (i.e., the interglacial-to-glacial transitions across oxygen isotope stage boundaries 54 and 32). The major changes in circulation seem to occur a few thousand years in advance of the glacial episodes, at or near periods of ice sheet growth. This relationship indicates that changes in atmospheric circulation in the tropics led and influenced the development of conditions suitable for polar and continental ice sheet growth in the Northern Hemisphere.  相似文献   

14.
《农业工程》2014,34(3):154-159
The distribution and size fractions of chlorophyll a (Chl a) concentration in the eastern equatorial Pacific Ocean in boreal autumn were investigated during October and November, 2011. Environmental factors, including hydrology and nutrients, that might affect the distribution and size composition were analyzed. A total of 18 stations including 11 CTD stations and 7 navigation stations were selected which stretch from the northwest coast of South America to the area of the central Pacific Ocean south of the Hawaiian Islands (2.77°S–13.02°N, 84.11–154.02°W). The studied area can be divided into two transects: the 6°N transect (124–148°W) and the154°W transect (10–13°N). Results showed that the surface Chl a concentration was higher in the east near the northwest coast of South America (>0.200 mg/m3) and lower in the west (0.100–0.200 mg/m3), and it presented a highly significant negative correlation with sea surface temperature (p < 0.001). There were some differences between the sectional distribution of Chl a concentration between the 6°N and 154°W transects. The high values of Chl a concentration occurred near the surface along the 6°N transect (0–75 m), while they were relatively deeper along the 154°W transect (50–100 m). Iron might be the factor that limited the growth of phytoplankton in the eastern equatorial Pacific Ocean. Picophytoplankton (Pico) was the dominant taxa in the surveyed area, particularly in the waters along the two transects (>70% of total Chl a). The Pico to total Chl a ratio was higher in the upper layer (>70%) than in the deeper layer.  相似文献   

15.
Carlson SM  Quinn TP  Hendry AP 《Heredity》2011,106(3):438-447
Increasing acceptance of the idea that evolution can proceed rapidly has generated considerable interest in understanding the consequences of ongoing evolutionary change for populations, communities and ecosystems. The nascent field of 'eco-evolutionary dynamics' considers these interactions, including reciprocal feedbacks between evolution and ecology. Empirical support for eco-evolutionary dynamics has emerged from several model systems, and we here present some possibilities for diverse and strong effects in Pacific salmon (Oncorhynchus spp.). We specifically focus on the consequences that natural selection on body size can have for salmon population dynamics, community (bear-salmon) interactions and ecosystem process (fluxes of salmon biomass between habitats). For example, we find that shifts in body size because of selection can alter fluxes across habitats by up to 11% compared with ecological (that is, numerical) effects. More generally, we show that selection within a generation can have large effects on ecological dynamics and so should be included within a complete eco-evolutionary framework.  相似文献   

16.
The global warming trend of the latest Oligocene was interrupted by several cooling events associated with Antarctic glaciations. These cooling events affected surface water productivity and plankton assemblages. Well-preserved radiolarians were obtained from upper Oligocene to lower Miocene sediments at Ocean Drilling Program (ODP) Leg 199 Sites 1218 and 1219 in the equatorial Pacific, and 110 radiolarian species were identified.Four episodes of significant radiolarian faunal changes were identified: middle late Oligocene (27.5 to 27.3 Ma), latest Oligocene (24.4 Ma), earliest Miocene (23.3 Ma), and middle early Miocene (21.6 Ma). These four episodes approximately coincide with increases and decreases of biogenic silica accumulation rates and increases in δ18O values coded as “Oi” and “Mi” events. These data indicate that Antarctic glaciations were associated with change of siliceous sedimentation patterns and faunal changes in the equatorial Pacific.Radiolarian fauna was divided into three assemblages based on variations in radiolarian productivity, species richness and the composition of dominant species: a late Oligocene assemblage (27.6 to 24.4 Ma), a transitional assemblage (24.4 to 23.3 Ma) and an early Miocene assemblage (23.3 to 21.2 Ma). The late Oligocene assemblage is characterized by relatively high productivity, low species richness and four dominant species of Tholospyris anthophora, Stichocorys subligata, Lophocyrtis nomas and Lithelius spp. The transitional assemblage represents relatively low values of productivity and species richness, and consists of three dominant species of T. anthophora, S. subligata and L. nomas. The characteristics of the early Miocene assemblage are relatively low productivity, but high species richness. The two dominant species present in this assemblage are T. anthophora and Cyrtocapsella tetrapera. The most significant faunal turnover of radiolarians is marked at the boundary between the transitional/early Miocene assemblages.We also reviewed changes in other microfossil assemblages in the low latitudes during the late Oligocene through early Miocene. The microfossil assemblages of major groups show sequential changes near the Oligocene/Miocene (O/M) boundary (23.8 Ma). Many extinction events and some first occurrences of calcareous nannofossils and many occurrences of radiolarians are found from about 24.8 to 23.3 Ma, and first occurrences of planktic foraminifers and diatoms followed from 23.2 through 22 Ma. Hence, the O/M boundary is identified as a significant level for microfossil evolutions.  相似文献   

17.
Associative learning relies on event timing. Fruit flies for example, once trained with an odour that precedes electric shock, subsequently avoid this odour (punishment learning); if, on the other hand the odour follows the shock during training, it is approached later on (relief learning). During training, an odour-induced Ca(++) signal and a shock-induced dopaminergic signal converge in the Kenyon cells, synergistically activating a Ca(++)-calmodulin-sensitive adenylate cyclase, which likely leads to the synaptic plasticity underlying the conditioned avoidance of the odour. In Aplysia, the effect of serotonin on the corresponding adenylate cyclase is bi-directionally modulated by Ca(++), depending on the relative timing of the two inputs. Using a computational approach, we quantitatively explore this biochemical property of the adenylate cyclase and show that it can generate the effect of event timing on associative learning. We overcome the shortage of behavioural data in Aplysia and biochemical data in Drosophila by combining findings from both systems.  相似文献   

18.
Seasonal variability of nutrients and productivity were examined in Pyramid Lake, a hyposaline, N-deficient, terminal desert lake, during a dry period. River inflow and N-fixation during 1990 were minimal allowing internal nutrient cycling to be more closely studied. Nutrient cycling was strongly affected by seasonal thermal stratification that was typical for a warm monomictic lake. Concentrations of nitrate, phosphate, and silicate in surface waters were highest during winter mixing and decreased rapidly in the spring due to a diatom bloom. Maximum average chlorophyll concentration in surface waters was 2.7 ± 1.2 µg 1–1 and occurred in April while surface nutrients were being depleted. In contrast to chlorophyll, maximum particulate carbon in surface waters occurred in July–August when areal productivity was highest (367–398 mg C m–2 day–1). Concurrent with spring nutrient depletion in surface waters was increasing N-deficiency in the plankton. After the spring bloom dissipated in May, particulate matter (POM) became increasingly N-deficient reaching maximum elemental C : N of > 18 during summer-fall. Profiles of the C : N ratio of POM were nearly constant with depth for individual sampling dates suggesting that the residence time of POM in the water column was short (< 1 month). While surface waters were nutrient depleted during summer stratification, nutrient concentrations of bottom waters progressively increased, presumably through the oxidation of POM sinking to the bottom (103 m). Converting the rate of oxygen depletion in bottom waters to carbon equivalents of POM suggests that 42 % of mean annual phytoplankton production in overlying waters during 1990 was mineralized in bottom waters.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号