首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Egg rejection in birds is a specific adaptation toward avian brood parasitism, whereas nest sanitation is a general behavior for cleaning the nest and avoiding predation. However, both behaviors refer to the action of ejecting objects out of the nest, and nest sanitation has been proposed as a pre-adaptation for egg rejection. Here, we tested the eliciting effect of nest sanitation on egg rejection in the red-whiskered bulbul Pycnonotus jocosus, a potential host species that are sympatric with parasitic cuckoos. We conducted meta-analyses of previous studies on both nest sanitation and egg rejection, in order to evaluate the consistency of our conclusions. Our results showed that nest sanitation did not elicit egg rejection in P. jocosus. The conclusions concerning such an eliciting effect from previous studies were mixed, whereas the methodologies were inconsistent, making the studies unsuitable for comparisons. However, the ejection frequency of nest sanitation was consistently higher than the frequency of egg rejection across different host species or populations. These results suggest that nest sanitation, which is an ancient behavior, is more fundamental than egg rejection, but the effect of the former on the latter is complex and needs further study. Standardized methodologies and the integration of behavior, physiology, and modeling may provide better opportunities to explore the relationship between nest sanitation and egg rejection.  相似文献   

2.
Many bird species can reject foreign eggs from their nests. This behaviour is thought to have evolved in response to brood parasites, birds that lay their eggs in the nest of other species. However, not all hosts of brood parasites evict parasitic eggs. In this study, we collate data from egg rejection experiments on 198 species, and perform comparative analyses to understand the conditions under which egg rejection evolves. We found evidence, we believe for the first time in a large-scale comparative analysis, that (i) non-current host species have rejection rates as high as current hosts, (ii) egg rejection is more likely to evolve when the parasite is relatively large compared with its host and (iii) egg rejection is more likely to evolve when the parasite chick evicts all the host eggs from the nest, such as in cuckoos. Our results suggest that the interactions between brood parasites and their hosts have driven the evolution of egg rejection and that variation in the costs inflicted by parasites is fundamental to explaining why only some host species evolve egg rejection.  相似文献   

3.
The evolution of egg size in the brood parasitic cuckoos   总被引:2,自引:0,他引:2  
We compared genera of nonparasitic cuckoos and two groups ofparasitic cuckoos: those raised together with host young ("nonejectors")and those in which the newly hatched cuckoo either ejects thehost eggs or chicks, or kills the host young ("ejectors"). Nonejectorsare similar to their hosts in body size and parasitize largerhosts than do ejectors, which parasitize hosts much smallerthan themselves. In both types of parasite, the cuckoo's eggtends to match the host eggs in size. To achieve this, nonejectorshave evolved a smaller egg for their body size than have nonparasiticcuckoos, and ejectors have evolved an even smaller egg. Amongejector cuckoo genera, larger cuckoos have larger eggs relativeto the eggs of their hosts, and the relationship between cuckooegg volume (mass of the newly-hatched cuckoo) and host egg volume(mass to be ejected) did not differ from that predicted by weight-liftingallometry. However, comparing among Cuculus cuckoo species,the allometric slope differed from the predicted, so it is notclear that egg size is related to the need to give the cuckoochick sufficient strength for ejection. Comparing the two mostspeciose ejector genera, Chrysococcyx cuckoos (smaller and parasitizedome-nesting hosts) lay eggs more similar in size to their host'seggs than do Cuculus cuckoos (larger and parasitize open cup–nestinghosts). Closer size-matching of host eggs in Chrysococcyx mayreflect the following: (1) selection to reduce adult body massto facilitate entry through small domed nest holes to lay, and(2) less need for a large egg, because longer incubation periodsin dome-nesting hosts allow the young cuckoo more time to growbefore it need eject host eggs.  相似文献   

4.
How do birds tell the colours of their own and foreign eggs apart? We demonstrate that perceptual modelling of avian visual discrimination can predict behavioural rejection responses to foreign eggs in the nest of wild birds. We use a photoreceptor noise-limited colour opponent model of visual perception to evaluate its accuracy as a predictor of behavioural rates of experimental egg discrimination in the song thrush Turdus philomelos. The visual modelling of experimental and natural eggshell colours suggests that photon capture from the ultraviolet and short wavelength-sensitive cones elicits egg rejection decisions in song thrushes, while inter-clutch variation of egg coloration provides sufficient contrasts for detecting conspecific parasitism in this species. Biologically realistic sensory models provide an important tool for relating variability of behavioural responses to perceived phenotypic variation.  相似文献   

5.
In a coevolutionary arms race between an interspecific broodparasite and its host species, both are expected to evolveadaptations and counteradaptations. We studied egg discriminationin the Australian warbler (Acrocephalus australis). This speciesis currently not significantly parasitized by the seven speciesof cuckoo for which it is a suitable host. However, experimentalbrood parasitism in the warbler revealed a fine tuned egg discriminationresponse towards non-mimetic and conspecific eggs, the firstsuch evidence in an Australian passerine: (1) non-mimetic eggswere significantly more often rejected than conspecific eggs;(2) only non-mimetic dummy eggs were rejected selectively,whereas rejection of conspecific eggs entailed a rejectioncost; (3) replacement of a host's egg with a conspecific eggduring egg laying resulted in a significantly higher rejectionrate than after the day of clutch completion; (4) by contrast,rejection rate after addition of a conspecific egg was independentof nest stage; (5) conspecific eggs introduced into a clutchduring the egg laying period led to a significantly highernest desertion rate and a lower egg ejection rate than afterthe day of clutch completion; and (6) addition of a conspecificegg led to egg ejection while egg replacement with a conspecificegg led to nest desertion. The fact that this species respondsdifferentially toward different modes of artificial parasitismsuggests that its egg discrimination has evolved to minimizethe costs of rejection and parasitism. The ability to rejecthighly mimetic conspecific eggs may explain the current paucityof brood parasitism in this species. The significance of thisfor brood parasite-host coevolution is discussed.  相似文献   

6.
7.
8.
Interactions between parasitic cuckoos and their songbird hosts form a classical reciprocal “arms race,” and are an excellent model for understanding the process of coevolution. Changes in host egg coloration via the evolution of interclutch variation in egg color or intraclutch consistency in egg color are hypothesized counter adaptations that facilitate egg recognition and thus limit brood parasitism. Whether these antiparasitism strategies are maintained when the selective pressure of parasitism is relaxed remains debated. However, introduced species provide unique opportunities for testing the direction and extent of natural selection on phenotypic trait maintenance and variation. Here, we investigated egg rejection behavior and egg color polymorphism in the red‐billed leiothrix (Leiothrix lutea), a common cuckoo (Cuculus canorus) host, in a population introduced to Hawaii 100 years ago (breeding without cuckoos) and a native population in China (breeding with cuckoos). We found that egg rejection ability was equally strong in both the native and the introduced populations, but levels of interclutch variation and intraclutch consistency in egg color in the native population were higher than in the introduced population. This suggests that egg rejection behavior in hosts can be maintained in the absence of brood parasitism and that egg appearance is maintained by natural selection as a counter adaptation to brood parasitism. This study provides rare evidence that host antiparasitism strategies can change under parasite‐relaxed conditions and reduced selection pressure.  相似文献   

9.
Given the high costs of brood parasitism, avian hosts have adopted different defences to counteract parasites by ejecting the foreign egg or by deserting the parasitized nest. These responses depend mainly on the relative size of the host compared with the parasitic egg. Small hosts must deal with an egg considerably larger than their own, so nest desertion becomes the only possible method of egg rejection in these cases. The use of artificial model eggs made of hard material in egg‐recognition experiments has been criticized because hard eggs underestimate the frequency of egg ejection. However, no available studies have investigated the effect of softer material. Here, we test the potential effect of size of dummy parasitic eggs in relation to egg‐rejection behaviour (egg ejection and nest desertion rates) in Western Bonelli's Warbler Phylloscopus bonelli, a small host, using plasticine non‐mimetic eggs of three different sizes. In addition, we tested the potential effect of material, comparing ejection and desertion responses between real and plasticine eggs. As predicted, small eggs were always ejected, whereas nest desertion occurred more frequently with large eggs, thus suggesting that nest desertion occurs because of the constraints imposed by the large eggs. We found that plasticine may misrepresent the responses to experimental parasitism, at least in small host species, because this material facilitates egg ejection, provoking a decrease in nest desertion rate. Thus, particular caution is needed in the interpretation of the results in egg‐rejection experiments performed using dummy eggs made of soft materials.  相似文献   

10.
Coevolutionary arms races are a potent force in evolution, and brood parasite-host dynamics provide classical examples. Different host-races of the common cuckoo, Cuculus canorus, lay eggs in the nests of other species, leaving all parental care to hosts. Cuckoo eggs often (but not always) appear to match remarkably the color and pattern of host eggs, thus reducing detection by hosts. However, most studies of egg mimicry focus on human assessments or reflectance spectra, which fail to account for avian vision. Here, we use discrimination and tetrachromatic color space modeling of bird vision to quantify egg background and spot color mimicry in the common cuckoo and 11 of its principal hosts, and we relate this to egg rejection by different hosts. Egg background color and luminance are strongly mimicked by most cuckoo host-races, and mimicry is better when hosts show strong rejection. We introduce a novel measure of color mimicry-"color overlap"-and show that cuckoo and host background colors increasingly overlap in avian color space as hosts exhibit stronger rejection. Finally, cuckoos with better background color mimicry also have better pattern mimicry. Our findings reveal new information about egg mimicry that would be impossible to derive by the human eye.  相似文献   

11.
Much attention has been devoted to understanding the evolution of egg mimicry in avian brood parasites. The majority of studies have been based on human perception when scoring the mimicry of the parasitic egg. Surprisingly, there has been no detailed study on the recognition and sensitivity towards differently coloured parasitic eggs. We investigated effect of different colours of the experimental eggs measured by ultraviolet (UV)-visible reflectance spectrophotometry on rejection behaviour in the song thrush ( Turdus philomelos ). We carried out a set of experiments with four blue model eggs representing mimetic eggs, whereas six other colours represented nonmimetic eggs. Our results revealed that two colours originally designed as a mimetic were rejected at a high rate, whereas one group of the nonmimetic was accepted. A multiple regression model of absolute differences between song thrush and experimental eggs on rejection rate showed that the level of mimicry in the UV and green parts of the colour spectrum significantly influenced egg rejection in the song thrush. To our knowledge, this is the first detailed study showing that different colour perception by the birds can affect their responses towards the parasitic egg. These findings suggest that the combination of UV and visible ranges of the spectra plays a major role in the evolution of discrimination processes, as well as in the evolution of the mimicry of the parasitic egg.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 269–276.  相似文献   

12.
Parasitic cuckoos lay eggs that mimic those of their hosts, and such close phenotypic matching may arise from coevolutionary interactions between parasite and host. However, cuckoos may also explicitly choose hosts in a way that increases degree of matching between eggs of cuckoos and parasites, with female preference for specific host phenotypes increasing the degree of matching. We tested for temporal change in degree of matching between eggs of the parasitic European cuckoo (Cuculus canorus) and its reed warbler (Acrocephalus scirpaceus) host during 24 consecutive years in a recently parasitized reed warbler population. Cuckoo-host egg matching in an ultraviolet-brownness component yielding most of the chromatic variance of eggs improved during the study period. Improved matching was not due to changes in cuckoo egg phenotype. Cuckoo eggs matched host eggs for ultraviolet-brownness within nests irrespective of duration of sympatry. Ultraviolet-brownness of cuckoo eggs was similar to that of reed warbler eggs at parasitized nests, but differed from that of reed warbler eggs at unparasitized nests. These findings provide tentative support for the cuckoo preference hypothesis suggesting that cuckoo-host egg matching could partially be due to cuckoo females selecting host nests based on the appearance of their eggs.  相似文献   

13.
In this article we present tentative support for predictionsderived from a spatial habitat structure hypothesis arguingthat common cuckoos Cuculus canorus, the most common obligatebrood parasite in Europe, only breed in areas where they haveaccess to vantage points in trees. Thus, species in which somepopulations breed near trees while other populations breed farther from trees have a different cuckoo—host population dynamicthan species in which all populations always breed in the vicinityof trees. Parasitism rate, mimicry of brood parasite eggs withthose of the hosts, and rejection behavior of hosts varieswith the host breeding habitat. Cuckoos are best adapted toexploit species in which some populations breed near trees while other populations breed in open areas because such hosts arenot always accessible to cuckoos, and thus gene flow amongunparasitized and parasitized populations delays the evolutionof host adaptations. Adaptive behavior in cuckoos as well asin their hosts can be predicted from the spatial habitat structurehypothesis.  相似文献   

14.
The eggshells of communally breeding greater anis Crotophaga major consist of a blue‐green pigmented calcite matrix overlaid by a chalky white layer of vaterite, both of which are polymorphs of calcium carbonate. The white vaterite layer is intact in freshly laid eggs and may function in protecting the eggs from mechanical damage, but it also abrades during incubation to reveal the blue calcite shell underneath. Previous research has shown that this color change serves a visual signaling function: nesting greater anis can discriminate between eggs that are freshly laid and those that have already been incubated, which allows them to reject asynchronous eggs laid by extra‐group parasites. Here we use avian visual modeling and pigment extraction to assess the perceptual and chemical bases of such egg recognition. We found that there was no overlap between the avian perceptual space occupied by ani eggshells with and without vaterite, and that vaterite lacked both of the pigments found in the eggshell's calcite matrix, bililverdin and protoporphyrin. The visual contrast between the unpigmented vaterite and the blue‐pigmented calcite appears to pre‐date the evolution of the signaling function, since the related guira cuckoo Guira guira, also a communal breeder, lays similarly structured and pigmented eggs but does not use the visual contrast as a signal to detect parasitism.  相似文献   

15.
Hosts of brood‐parasitic birds typically evolve anti‐parasitism defences, including mobbing of parasitic intruders at the nest and the ability to recognize and reject foreign eggs from their clutches. The Greater Honeyguide Indicator indicator is a virulent brood parasite that punctures host eggs and kills host young, and accordingly, a common host, the Little Bee‐eater Merops pusillus frequently rejects entire clutches that have been parasitized. We predicted that given the high costs of accidentally rejecting an entire clutch, and that the experimental addition of a foreign egg is insufficient to induce this defence, Bee‐eaters require the sight of an adult parasite near the nest as an additional cue for parasitism before they reject a clutch. We found that many Little Bee‐eater parents mobbed Greater Honeyguide dummies while ignoring barbet control dummies, showing that they recognized them as a threat. Surprisingly, however, neither a dummy Honeyguide nor the presence of a foreign egg, either separately or in combination, was sufficient to stimulate egg rejection.  相似文献   

16.
Avian brood parasitism is reproductively costly for hosts and selects for cognitive features enabling anti‐parasitic resistance at multiple stages of the host''s breeding cycle. The true thrushes (genus Turdus) represent a nearly worldwide clade of potential hosts of brood parasitism by Cuculus cuckoos in Eurasia and Africa and Molothrus cowbirds in the Americas. The Eurasian blackbird (Turdus merula) builds an open‐cup nest and is common within much of the common cuckoo''s (C. canorus) breeding range. While this thrush is known to be parasitized at most only at low rates by this cuckoo, the species is also a strong rejector of nonmimetic foreign eggs in the nest. Given their open‐cup nesting habits, we predict that Eurasian blackbirds primarily use visual cues in making a distinction between own and parasitically or experimentally inserted foreign eggs in the nest. We then provide a comprehensive and quantitative review of the literature on blackbird egg rejection studies. This review corroborates that vision is the primary sensory modality used by blackbirds in assessing eggs, but also brings attention to some other, less commonly studied cues which appear to influence rejection, including predator exposure, individual experience, stage of clutch completion, and maternal hormonal state. Blackbirds are also able to recognize and eject even highly mimetic eggs (including those of conspecifics) at a moderate rate, apparently relying on many of the same sensory cues. Although the cues involved in foreign egg recognition by Eurasian blackbirds do not appear specialized to nonmimetic cuckoo parasitism, we cannot differentiate between the possibility of egg rejection being selected by mostly conspecific parasitism or by the evolutionary ghost of a now‐extinct, mimetic cuckoo host‐race.  相似文献   

17.
18.
19.
Evolution of host egg mimicry in a brood parasite, the great spotted cuckoo   总被引:1,自引:0,他引:1  
Brood parasitism in birds is one of the best examples of coevolutionary interactions in vertebrates. Coevolution between hosts and parasites is assumed to occur because the parasite imposes strong selection pressures on its hosts, reducing their fitness and thereby favouring counter-adaptations (e.g. egg rejection) which, in turn, select for parasite resistance (e.g. egg mimicry). Great spotted cuckoos ( Clamator glandarius ) are usually considered a brood parasite with eggs almost perfectly mimicking those of their host, the magpie ( Pica pica ). However, Cl. glandarius also exploits South African hosts with very different eggs, both in colour and size, while the Cl. glandarius eggs are similar to those laid in nests of European hosts. Here, we used spectrophotometric techniques for the first time to quantify mimicry of parasitic eggs for eight different host species. We found: (1) non-significant differences in appearance of Cl. glandarius eggs laid in nests of different host species, although eggs laid in South Africa and Europe differed significantly; (2) contrary to the general assumption that Cl. glandarius eggs better mimic those of the main host in Europe ( P. pica ), Cl. glandarius eggs more closely resembled those of the azure-winged magpie ( Cyanopica cyana ), a potential host in which there is no evidence of recent parasitism; (3) the appearance of Cl. glandarius eggs was not significantly related to the appearance of host eggs. We discuss three possible reasons why Cl. glandarius eggs resemble eggs of some of their hosts. We suggest that colouration of Cl. glandarius eggs is an apomorphic trait, and that variation between eggs laid in South African and European host nests is due to genetic isolation among these populations and not due to variation in colouration of host eggs.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 551–563.  相似文献   

20.
Passerine hosts of parasitic cuckoos usually vary in their abilityto discriminate and reject cuckoo eggs. Costs of discriminationand rejection errors have been invoked to explain the maintenanceof this within-population variability. Recently, enforcementof acceptance by parasites has been identified as a rejectioncost in the magpie (Pica pica) and its brood parasite, the greatspotted cuckoo (Clamator glandarius). Previous experimentalwork has shown that rejecter magpies suffer from increased nestpredation by the great spotted cuckoo. Cuckoo predatory behavioris supposed to confer a selective advantage to the parasitebecause magpies experiencing a reproductive failure may providea second opportunity for the cuckoo to parasitize a replacementclutch. This hypothesis implicitly assumes that magpies modulatetheir propensity to reject parasite eggs as a function of previousexperience. We tested this hypothesis in a magpie populationbreeding in study plots varying in parasitism rate. Magpie pairs thatwere experimentally parasitized and had their nests depredated,after their rejection behavior had been assessed, changed theirbehavior from rejection to acceptance. The change in host behaviorwas prominent in study plots with high levels of parasitism,but not in plots with rare or no cuckoo parasitism. We discussthree possible explanations for these differences, concludingthat in study plots with a high density of cuckoos, the probability fora rejecter magpie nest of being revisited and depredated bya cuckoo is high, particularly for replacement clutches, and,therefore, the cost for magpies of rejecting a cuckoo egg ina replacement clutch is increased. Moreover, in areas with highlevels of host defense (low parasitism rate), the probabilityof parasitism and predation of rejecter-magpie nests by thecuckoo is reduced in both first and replacement clutches. Therefore,rejecter magpies in such areas should not change their rejectionbehavior in replacement clutches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号