首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.  相似文献   

2.
Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping.  相似文献   

3.
High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes. Nevertheless, assembly of complex genomes remains challenging, in part due to the presence of dispersed repeats which introduce ambiguity during genome reconstruction. Transposable elements (TEs) can be particularly problematic, especially for TE families exhibiting high sequence identity, high copy number, or complex genomic arrangements. While TEs strongly affect genome function and evolution, most current de novo assembly approaches cannot resolve long, identical, and abundant families of TEs. Here, we applied a novel Illumina technology called TruSeq synthetic long-reads, which are generated through highly-parallel library preparation and local assembly of short read data and which achieve lengths of 1.5–18.5 Kbp with an extremely low error rate (0.03% per base). To test the utility of this technology, we sequenced and assembled the genome of the model organism Drosophila melanogaster (reference genome strain y; cn, bw, sp) achieving an N50 contig size of 69.7 Kbp and covering 96.9% of the euchromatic chromosome arms of the current reference genome. TruSeq synthetic long-read technology enables placement of individual TE copies in their proper genomic locations as well as accurate reconstruction of TE sequences. We entirely recovered and accurately placed 4,229 (77.8%) of the 5,434 annotated transposable elements with perfect identity to the current reference genome. As TEs are ubiquitous features of genomes of many species, TruSeq synthetic long-reads, and likely other methods that generate long-reads, offer a powerful approach to improve de novo assemblies of whole genomes.  相似文献   

4.
The emergence of third‐generation sequencing (3GS; long‐reads) is bringing closer the goal of chromosome‐size fragments in de novo genome assemblies. This allows the exploration of new and broader questions on genome evolution for a number of nonmodel organisms. However, long‐read technologies result in higher sequencing error rates and therefore impose an elevated cost of sufficient coverage to achieve high enough quality. In this context, hybrid assemblies, combining short‐reads and long‐reads, provide an alternative efficient and cost‐effective approach to generate de novo, chromosome‐level genome assemblies. The array of available software programs for hybrid genome assembly, sequence correction and manipulation are constantly being expanded and improved. This makes it difficult for nonexperts to find efficient, fast and tractable computational solutions for genome assembly, especially in the case of nonmodel organisms lacking a reference genome or one from a closely related species. In this study, we review and test the most recent pipelines for hybrid assemblies, comparing the model organism Drosophila melanogaster to a nonmodel cactophilic Drosophila, D. mojavensis. We show that it is possible to achieve excellent contiguity on this nonmodel organism using the dbg2olc pipeline.  相似文献   

5.
Defects in mitochondrial electron transport chain (ETC) function have been implicated in a number of neurodegenerative disorders, cancer, and aging. Mitochondrial complex I (NADH dehydrogenase) is the largest and most complicated enzyme of the ETC with 45 subunits originating from two separate genomes. The biogenesis of complex I is an intricate process that requires multiple steps, subassemblies, and assembly factors. Here, we report the generation and characterization of a Drosophila model of complex I assembly factor deficiency. We show that CG7598 (dCIA30), the Drosophila homolog of human complex I assembly factor Ndufaf1, is necessary for proper complex I assembly. Reduced expression of dCIA30 results in the loss of the complex I holoenzyme band in blue-native polyacrylamide gel electrophoresis and loss of NADH:ubiquinone oxidoreductase activity in isolated mitochondria. The complex I assembly defect, caused by mutation or RNAi of dCIA30, has repercussions both during development and adulthood in Drosophila, including developmental arrest at the pupal stage and reduced stress resistance during adulthood. Expression of the single-subunit yeast alternative NADH dehydrogenase, Ndi1, can partially or wholly rescue phenotypes associated with the complex I assembly defect. Our work shows that CG7598/dCIA30 is a functional homolog of Ndufaf1 and adds to the accumulating evidence that transgenic NDI1 expression is a viable therapy for disorders arising from complex I deficiency.  相似文献   

6.
Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.  相似文献   

7.
Animal cell lines often undergo extreme genome restructuring events, including polyploidy and segmental aneuploidy that can impede de novo whole-genome assembly (WGA). In some species like Drosophila, cell lines also exhibit massive proliferation of transposable elements (TEs). To better understand the role of transposition during animal cell culture, we sequenced the genome of the tetraploid Drosophila S2R+ cell line using long-read and linked-read technologies. WGAs for S2R+ were highly fragmented and generated variable estimates of TE content across sequencing and assembly technologies. We therefore developed a novel WGA-independent bioinformatics method called TELR that identifies, locally assembles, and estimates allele frequency of TEs from long-read sequence data (https://github.com/bergmanlab/telr). Application of TELR to a ∼130x PacBio dataset for S2R+ revealed many haplotype-specific TE insertions that arose by transposition after initial cell line establishment and subsequent tetraploidization. Local assemblies from TELR also allowed phylogenetic analysis of paralogous TEs, which revealed that proliferation of TE families in vitro can be driven by single or multiple source lineages. Our work provides a model for the analysis of TEs in complex heterozygous or polyploid genomes that are recalcitrant to WGA and yields new insights into the mechanisms of genome evolution in animal cell culture.  相似文献   

8.
The Drosophila integrator complex consists of 14 subunits that associate with the C terminus of Rpb1 and catalyze the endonucleolytic cleavage of nascent snRNAs near their 3′ ends. Although disruption of almost any integrator subunit causes snRNA misprocessing, very little is known about the role of the individual subunits or the network of structural and functional interactions that exist within the complex. Here we developed an RNAi rescue assay in Drosophila S2 cells to identify functional domains within integrator subunit 12 (IntS12) required for snRNA 3′ end formation. Surprisingly, the defining feature of the Ints12 protein, a highly conserved and centrally located plant homeodomain finger domain, is not required for reporter snRNA 3′ end cleavage. Rather, we find a small, 45-amino acid N-terminal microdomain to be both necessary and nearly sufficient for snRNA biogenesis in cells depleted of endogenous IntS12 protein. This IntS12 microdomain can function autonomously, restoring full integrator processing activity when introduced into a heterologous protein. Moreover, mutations within the microdomain not only disrupt IntS12 function but also abolish binding to other integrator subunits. Finally, the IntS12 microdomain is sufficient to interact and stabilize the putative scaffold integrator subunit, IntS1. Collectively, these results identify an unexpected interaction between the largest and smallest integrator subunits that is essential for the 3′ end formation of Drosophila snRNA.  相似文献   

9.
The mechanism of assembly of multiprotein complexes and the subsequent organization of activity are not well understood. Here we report the application of biophysical tools to investigate the relationship between structure and function in protein assemblies. We used as a model system the SCF(Skp2) complex that targets p27(Kip1) for ubiquitination and subsequent degradation; this process requires an adapter protein, Cks1. By dissecting the interactions between the different subunits we show that the properties of Cks1 are highly context dependent, and its activity is acquired only when the complex is fully assembled. The results provide insights into the central role of small adapters in macromolecular assembly and explain their high sequence conservation. Simultaneous and synergistic binding of multiple subunits in a complex provides the specificity and control required before the key cell-cycle regulator p27 is committed to degradation.  相似文献   

10.
Gene and SNP annotation are among the first and most important steps in analyzing a genome. As the number of sequenced genomes continues to grow, a key question is: how does the quality of the assembled sequence affect the annotations? We compared the gene and SNP annotations for two different Bos taurus genome assemblies built from the same data but with significant improvements in the later assembly. The same annotation software was used for annotating both sequences. While some annotation differences are expected even between high-quality assemblies such as these, we found that a staggering 40% of the genes (>9,500) varied significantly between assemblies, due in part to the availability of new gene evidence but primarily to genome mis-assembly events and local sequence variations. For instance, although the later assembly is generally superior, 660 protein coding genes in the earlier assembly are entirely missing from the later genome''s annotation, and approximately 3,600 (15%) of the genes have complex structural differences between the two assemblies. In addition, 12–20% of the predicted proteins in both assemblies have relatively large sequence differences when compared to their RefSeq models, and 6–15% of bovine dbSNP records are unrecoverable in the two assemblies. Our findings highlight the consequences of genome assembly quality on gene and SNP annotation and argue for continued improvements in any draft genome sequence. We also found that tracking a gene between different assemblies of the same genome is surprisingly difficult, due to the numerous changes, both small and large, that occur in some genes. As a side benefit, our analyses helped us identify many specific loci for improvement in the Bos taurus genome assembly.  相似文献   

11.
Karyotype change and subsequent evolution is triggered by chromosome fusion and rearrangement events, which often occur when telomeres become dysfunctional. Telomeres protect linear chromosome ends from DNA damage responses (DDRs), and telomere dysfunction may result in genome instability. However, the complex chromosome end structures and the other possible consequences of telomere dysfunction have rarely been resolved at the nucleotide level due to the lack of the high-throughput methods needed to analyse these highly repetitive regions. Here we applied long-read sequencing technology to Caenorhabditis elegans survivor lines that emerged after telomere dysfunction. The survivors have preserved traces of DDRs in their genomes and our data revealed that variants generated by telomere dysfunction are accumulated along all chromosomes. The reconstruction of the chromosome end structures through de novo genome assemblies revealed diverse types of telomere damage processing at the nucleotide level. When telomeric repeats were totally eroded by telomere dysfunction, DDRs were mostly terminated by chromosome fusion events. We also partially reconstructed the most complex end structure and its DDR signatures, which would have been accumulated via multiple cell divisions. These finely resolved chromosome end structures suggest possible mechanisms regarding the repair processes after telomere dysfunction, providing insights into chromosome evolution in nature.  相似文献   

12.
Remarkable advances in DNA sequencing technology have created a need for de novo genome assembly methods tailored to work with the new sequencing data types. Many such methods have been published in recent years, but assembling raw sequence data to obtain a draft genome has remained a complex, multi-step process, involving several stages of sequence data cleaning, error correction, assembly, and quality control. Successful application of these steps usually requires intimate knowledge of a diverse set of algorithms and software. We present an assembly pipeline called A5 (Andrew And Aaron''s Awesome Assembly pipeline) that simplifies the entire genome assembly process by automating these stages, by integrating several previously published algorithms with new algorithms for quality control and automated assembly parameter selection. We demonstrate that A5 can produce assemblies of quality comparable to a leading assembly algorithm, SOAPdenovo, without any prior knowledge of the particular genome being assembled and without the extensive parameter tuning required by the other assembly algorithm. In particular, the assemblies produced by A5 exhibit 50% or more reduction in broken protein coding sequences relative to SOAPdenovo assemblies. The A5 pipeline can also assemble Illumina sequence data from libraries constructed by the Nextera (transposon-catalyzed) protocol, which have markedly different characteristics to mechanically sheared libraries. Finally, A5 has modest compute requirements, and can assemble a typical bacterial genome on current desktop or laptop computer hardware in under two hours, depending on depth of coverage.  相似文献   

13.
14.
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention.  相似文献   

15.
Centromeres are specified epigenetically by the incorporation of the histone H3 variant CENP-A. In humans, amphibians, and fungi, CENP-A is deposited at centromeres by the HJURP/Scm3 family of assembly factors, but homologues of these chaperones are absent from a number of major eukaryotic lineages such as insects, fish, nematodes, and plants. In Drosophila, centromeric deposition of CENP-A requires the fly-specific protein CAL1. Here, we show that targeting CAL1 to noncentromeric DNA in Drosophila cells is sufficient to heritably recruit CENP-A, kinetochore proteins, and microtubule attachments. CAL1 selectively interacts with CENP-A and is sufficient to assemble CENP-A nucleosomes that display properties consistent with left-handed octamers. The CENP-A assembly activity of CAL1 resides within an N-terminal domain, whereas the C terminus mediates centromere recognition through an interaction with CENP-C. Collectively, this work identifies the “missing” CENP-A chaperone in flies, revealing fundamental conservation between insect and vertebrate centromere-specification mechanisms.  相似文献   

16.
A physical mapping strategy has been developed to verify and accelerate the assembly and gap closure phase of a microbial genome shotgun-sequencing project. The protocol was worked out during the ongoing Pseudomonas putida KT2440 genome project. A macro-restriction map was constructed by linking probe hybridisation of SwaI- or I-CeuI-restricted chromosomes to serve as a backbone for the quick quality control of sequence and contig assemblies. The library of PCR-generated SwaI linking probes was derived from the sequence assembly after 3- and 6-fold genome coverage. In order to support gap closure in regions with ambiguous assemblies such as the repetitive sequence of the seven ribosomal operons, high-resolution Smith/Birnstiel maps were generated by Southern hybridisation of pulsed-field gel electrophoresis-separated rare-cutter complete/frequent-cutter partial digestions with rare-cutter fragment end probes. Overall 1.5 Mb of the 6.1 Mb P.putida KT2440 genome has been subjected to high-resolution physical mapping in order to align assemblies generated from shotgun sequencing.  相似文献   

17.
Over the past four decades, the predominant view of molecular evolution saw little connection between natural selection and genome evolution, assuming that the functionally constrained fraction of the genome is relatively small and that adaptation is sufficiently infrequent to play little role in shaping patterns of variation within and even between species. Recent evidence from Drosophila, reviewed here, suggests that this view may be invalid. Analyses of genetic variation within and between species reveal that much of the Drosophila genome is under purifying selection, and thus of functional importance, and that a large fraction of coding and noncoding differences between species are adaptive. The findings further indicate that, in Drosophila, adaptations may be both common and strong enough that the fate of neutral mutations depends on their chance linkage to adaptive mutations as much as on the vagaries of genetic drift. The emerging evidence has implications for a wide variety of fields, from conservation genetics to bioinformatics, and presents challenges to modelers and experimentalists alike.  相似文献   

18.
Metazoans are known to contain a limited, yet highly conserved, set of signal transduction pathways that instruct early developmental patterning mechanisms. Genomic surveys that have compared gene conservation in signal transduction pathways between various insects and Drosophila support the conclusion that these pathways are conserved in evolution. However, the degree to which individual components of signal transduction pathways vary among more divergent arthropods is not known. Here, we report our results of a survey of the genome of the two-spotted spider mite Tetranychus urticae, using a set of 294 Drosophila orthologs of genes that function in signal transduction. We find a third of all genes surveyed absent from the spider mite genome. We also identify several novel duplications that have not been previously reported for a chelicerate. In comparison with previous insect surveys, Tetranychus contains a decrease in overall gene conservation, as well as an unusual ratio of ligands to receptors and other modifiers. These findings suggest that gene loss and duplication among components of signal transduction pathways are common among arthropods and suggest that signal transduction pathways in arthropods are more evolutionarily labile than previously hypothesized.  相似文献   

19.
The conservation of hox genes as well as their genomic organization across the phyla suggests that this system of anterior–posterior axis formation arose early during evolution and has come under strong selection pressure. Studies in the split Hox cluster of Drosophila have shown that proper expression of hox genes is dependent on chromatin domain boundaries that prevent inappropriate interactions among different types of cis-regulatory elements. To investigate whether boundary function and their role in regulation of hox genes is conserved in insects with intact Hox clusters, we used an algorithm to locate potential boundary elements in the Hox complex of mosquito, Anopheles gambiae. Several potential boundary elements were identified that could be tested for their functional conservation. Comparative analysis revealed that like Drosophila, the bithorax region in A. gambiae contains an extensive array of boundaries and enhancers organized into domains. We analysed a subset of candidate boundary elements and show that they function as enhancer blockers in Drosophila. The functional conservation of boundary elements from mosquito in fly suggests that regulation of hox genes involving chromatin domain boundaries is an evolutionary conserved mechanism and points to an important role of such elements in key developmentally regulated loci.  相似文献   

20.
As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark''s Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号