首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloride (Cl) conductances were studied in primary cultures of the bright part of rabbit distal convoluted tubule (DCTb) by the whole cell patch clamp technique. The bath solution (33°C) contained (in mm): 140 NaCl, 1 CaCl2, 10 N-2-hydroxy-ethylpiperazine-N′-2-ethanesulfonic acid (HEPES), pH 7.4 and the pipette solution 140 N-methyl-d-glucamine (NMDG)-Cl, 5 MgATP, 1 ethylene-glycol-bis(b-aminoethyl ether)-N,N,N,N′-tetraacetic acid (EGTA), 10 HEPES, pH 7.4. We identified a Cl current activated by 10−5 m forskolin, 10−3 m 8-bromo adenosine 3′,5′-cyclic monophophosphate (8 Br-cAMP), 10−6 m phorbol 12-myristate 13-acetate (PMA), 10−3 m intracellular adenosine 3′,5′-cyclic monophophosphate (cAMP) and 10−7 m calcitonin. The current-voltage relationship was linear and the relative ion selectivity was Br > Cl≫ I > glutamate. This current was inhibited by 10−3 m diphenylamine-2-carboxylate (DPC) and 10−4 m 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and was insensitive to 10−3 m 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS). These characteristics are similar to those described for the cystic fibrosis transmembrane conductance regulator (CFTR) Cl conductance. In a few cases, forskolin and calcitonin induced an outwardly rectifying Cl current blocked by DIDS. To determine the exact location of the Cl conductance 6-methoxy-1-(3-sulfonatopropyl) quinolinium (SPQ) fluorescence experiments were carried out. Cultures seeded on collagen-coated permeable filters were loaded overnight with 5 mm SPQ and the emitted fluorescence analyzed by laser-scan cytometry. Cl removal from the apical solution induced a Cl efflux which was stimulated by 10−5 m forskolin, 10−7 calcitonin and inhibited by 10−5 m NPPB. In 140 mm NaBr, forskolin stimulated an apical Br influx through the Cl pathway. Forskolin and calcitonin had no effect on the basolateral Cl permeability. Thus in DCTb cultured cells, exposure to calcitonin activates a Cl conductance in the apical membrane through a cAMP-dependent mechanism. Received: 5 July 1995/Revised: 21 December 1995  相似文献   

2.
Swelling-activated Cl currents (I Cl,swell ) have been characterized in a mouse renal inner medullary collecting duct cell line (mIMCD-K2). Currents activated by exposing the cells to hypotonicity exhibited characteristic outward rectification and time- and voltage-dependent inactivation at positive potentials and showed an anion selectivity of I > Br > Cl > Asp. NPPB (100 μm) inhibited the current in a voltage independent manner, as did exposure to 10 μm tamoxifen and 500 μm niflumic acid (NFA). In contrast, DIDS (100 μm) blocked the current with a characteristic voltage dependency. These characteristics of I Cl,swell in mIMCD-K2 cells are essentially identical to those of heterologously expressed cardiac CLC-3. A defining feature of CLC-3 is that activation of PKC by PDBu inhibits the conductance. In mIMCD-K2 cells preincubation with PDBu (100 nm) prevented the activation of I Cl,swell by hypotonicity. However, PDBu inhibition of I Cl,swell was reversed after PDBu withdrawal, but this was refractory to subsequent PDBu inhibition. Activation of either the cystic fibrosis transmembrane conductance regulator (CFTR) or Ca2+ activated Cl conductance (CaCC), which are coexpressed in mIMCD-K2 cells prior to PDBu treatment, abolished the PDBu inhibition of I Cl,swell . Control of I Cl,swell by PKC therefore depends on the physiological status of the cell. In intact mIMCD-K2 layers in Ussing chambers, forskolin stimulation of an inward short-circuit current (due to transepithelial Cl secretion via apical CFTR) was inhibited by cell swelling upon hypotonic exposure at the basolateral surface. Activation of I Cl,swell is therefore capable of regulating transepithelial Cl secretion and suggests that I Cl,swell is located at the basolateral membrane. PDBu exposure prior to or during hypotonic challenge was ineffective in reversing the swelling-activated inhibition of Cl secretion, but tamoxifen (100 μm) abolished the hypotonic inhibition of forskolin-stimulated short-circuit current (I sc ). RT-PCR analysis confirmed expression of mRNA for members of the CLC family, including both CLC-2 and 3, in the mIMCD-K2 cell line. Received: 24 February 2000/Revised: 26 May 2000  相似文献   

3.
4.
The rat primary cultured-airway monolayer had been an excellent model for deciphering the ion channel after nystatin permeabilization of its basolateral or apical membrane (Hwang et al., 1996). After apical membrane permeabilization of rat primary cultured-airway monolayer, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS)-sensitive outwardly rectifying depolarization-induced Cl (BORDIC) currents were observed across the basolateral membrane in symmetrical NMG-Cl solution in this study. No significant Cl current induced by the application of voltage clamping was observed across the apical membrane in symmetrical NMG-Cl solution after basolateral membrane permeabilization. The halide permeability sequence for BORDIC current was Br≒ I > Cl. BORDIC current was not affected by basolaterally applied bumetanide (0.5 mm). Basolateral DIDS (0.2 mm) but not apical DIDS inhibited CFTR mediated short-circuit current (I sc ) in an intact monolayer of rat airway epithelia, a T84 human colonal epithelial cell line, and a Calu-3 human airway epithelial cell line. This is the first report showing that depolarization induced Cl current is present on the basolateral membrane of airway epithelia. Received: 7 October 1999/Revised: 24 April 2000  相似文献   

5.
In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl-dependent short circuit current (ISC) response, consistent with net transepithelial Cl secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated ISC responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated ISC by about 40%, suggesting that basolateral uptake of Cl is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl channel to mediate cAMP-activated Cl secretion.  相似文献   

6.
Volume-sensitive chloride and potassium currents were studied, using the whole-cell clamp technique, in cultured wild-type mouse proximal convoluted tubule (PCT) epithelial cells and compared with those measured in PCT cells from null mutant kcne1 –/– mice. In wild-type PCT cells in primary culture, a Cl conductance activated by cell swelling was identified. The initial current exhibited an outwardly rectifying current-voltage (I-V) relationship, whereas steady-state current showed decay at depolarized membrane potentials. The ion selectivity was I > Br > Cl >> gluconate. This conductance was sensitive to 1 mM 4,4-Diisothiocyanostilbene-2,2-disulfonic acid (DIDS), 0.1 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and 1 mM diphenylamine-2-carboxylate (DPC). Osmotic stress also activated K+ currents. These currents are time-independent, activated at depolarized potentials, and inhibited by 0.5 mM quinidine, 5 mM barium, and 10 µM clofilium but are insensitive to 1 mM tetraethylammonium (TEA), 10 nM charybdotoxin (CTX), and 10 µM 293B. In contrast, the null mutation of kcne1 completely impaired volume-sensitive chloride and potassium currents in PCT. The transitory transfection of kcne1 restores both Cl and K+ swelling-activated currents, confirming the implication of KCNE1 protein in the cell-volume regulation in PCT cells in primary cultures.  相似文献   

7.
Microglia have a swelling-activated Cl current (which we call IClswell), and while some of its biophysical properties and functional roles have been elucidated, its molecular identity is unknown. To relate this current to cell functions and determine whether it is regulated by mechanisms other than cell swelling, it is important to establish both biophysical and pharmacological fingerprints. Here, we used rat microglia and a cell line derived from them (MLS-9) to study biophysical, regulatory and pharmacological properties of IClswell. The whole-cell current was activated in response to a hypo-osmotic bath solution, but not by voltage, and was time-independent during long voltage steps. The halide selectivity sequence was I>Br>Cl (Eisenman sequence I) and importantly, the excitatory amino acid, glutamate was permeant. Current activation required internal ATP, and was not affected by the guanine nucleotides, GTPγS or GDPβS, or physiological levels of internal Mg2+. The same current was activated by a low intracellular ionic strength solution without an osmotic gradient. IClswell was reversibly inhibited by known Cl channel blockers (NPP B, flufenamic acid, glibenclamide, DCPIB), and by the glutamate release inhibitor, riluzole. Cell swelling evoked glutamate release from primary microglia and MLS-9 cells, and this was inhibited by the blockers (above), and by IAA-94, but not by tamoxifen or the Na+/K+/Cl symport inhibitor, bumetanide. Together, these results confirm the similarity of IClswell in the two cell types, and point to a role for this channel in inflammation-mediated glutamate release in the CNS.Key words: rat microglia, MLS-9 cells, swelling-activated anion channels, VRAC, Cl channel biophysics, Cl channel pharmacology, ionic-strength, ATP-dependence, glutamate release  相似文献   

8.
Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl channels, however the nature of these Cl channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl current at extracellular pH 7.4. This constitutive Cl current was more permeable to larger anions (Eisenman sequence I; I > Br  Cl) and was substantially inhibited by > 100 mM [Ca2+]o, which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl current was blocked by NPPB, along with other Cl channel inhibitors (4,4′-diisothiocyanatostilbene-2,2′-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH < 5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl current. This acid-induced Cl current was also anion permeable (I > Br > Cl), but was distinguished from the constitutive Cl current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl current would be particularly relevant in the acidic IMCD (pH < 5.5). To our knowledge, the properties of these Cl currents are unique and provide the mechanisms to account for the Cl efflux previously speculated to be present in MDCT cells.  相似文献   

9.
In mouse mammary epithelial C127 cells expressing wild-type cystic fibrosis transmembrane conductance regulator (CFTR), chloride efflux, measured with the Cl-sensitive dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ), was stimulated by activation of protein kinase A with cyclic AMP elevating agents forskolin plus 3-isobutyl-1-methyl-xanthine (IBMX) and, to a less extent, by activation of protein kinase C with the phorbol 12-myristate 13-acetate (PMA). Conversely, bicarbonate influx, determined by intracellular alkalinization of cells incubated with the pH-sensitive dye 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluoresceintetraacetoxymethyl ester (BCECF-AM), was stimulated by cyclic AMP elevation, but not by PMA. Patch clamp analysis revealed that PMA activated a Cl current with the typical biophysical characteristics of swelling-activated current and not of CFTR.  相似文献   

10.
A Cl current activated by extracellular acidification, ICl(pHac), has been characterized in various mammalian cell types. Many of the properties of ICl(pHac) are similar to those of the cell swelling-activated Cl current ICl(swell): ion selectivity (I > Br > Cl > F), pharmacology [ICl(pHac) is inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 1,9-dideoxyforskolin (DDFSK), diphenylamine-2-carboxylic acid (DPC), and niflumic acid], lack of dependence on intra- or extracellular Ca2+, and presence in all cell types tested. ICl(pHac) differs from ICl(swell) in three aspects: 1) its rate of activation and inactivation is very much more rapid, currents reaching a maximum in seconds rather than minutes; 2) it exhibits a slow voltage-dependent activation in contrast to the fast voltage-dependent activation and time- and voltage-dependent inactivation observed for ICl(swell); and 3) it shows a more pronounced outward rectification. Despite these differences, study of the transition between the two currents strongly suggests that ICl(swell) and ICl(pHac) are related and that extracellular acidification reflects a novel stimulus for activating ICl(swell) that, additionally, alters the biophysical properties of the channel. cell swelling-activated chloride current; patch clamp; pH  相似文献   

11.
An inwardly rectifying swelling- and meiotic cell cycle-regulated anion current carried by the ClC channel splice variant CLH-3b dominates the whole cell conductance of the Caenorhabditis elegans oocyte. Oocytes also express a novel outwardly rectifying anion current termed ICl,OR. We recently identified a worm strain carrying a null allele of the clh-3 gene and utilized oocytes from these animals to characterize ICl,OR biophysical properties. The ICl,OR channel is strongly voltage dependent. Outward rectification is due to voltage-dependent current activation at depolarized voltages and rapid inactivation at voltages more hyperpolarized than approximately +20 mV. Apparent channel open probability is zero at voltages less than +20 mV. The channel has a 4:1 selectivity for Cl over Na+ and an anion selectivity sequence of SCN > I > Br > Cl > F. ICl,OR is relatively insensitive to most conventional anion channel inhibitors including DIDS, 4,4'-dinitrostilbene-2,2'-disulfonic acid, 9-anthracenecarboxylic acid, and 5-nitro-2-(3-phenylpropylamino)benzoic acid. However, the current is rapidly inhibited by niflumic acid, metal cations including Gd3+, Cd2+, and Zn2+, and bath acidification. The combined biophysical properties of ICl,OR are distinct from those of other anion currents that have been described. During oocyte meiotic maturation, ICl,OR activity is rapidly downregulated, suggesting that the channel may play a role in oocyte Cl homeostasis, development, cell cycle control, and/or ovulation. chloride channel; ovulation; cell cycle; meiotic maturation  相似文献   

12.
The chloride conductance of inner medullary collecting duct cells (mIMCD-3 cell line) has been investigated using the whole cell configuration of the patch clamp technique. Seventy-seven percent of cells were chloride selective when measured with a NaCl-rich bathing solution and a TEACl-rich pipette solution. Seventy-five percent of chloride-selective cells (90/144) had whole cell currents which exhibited an outwardly-rectifying (OR) current-voltage (I/V) relationship, while the remaining cells exhibited a linear (L) I/V relationship. The properties of the OR and L chloride currents were distinct. OR currents (mean current densities at ±60 mV of 66 ± 5 pA/pF and 44 ± 3 pA/pF), were time- and voltage-independent with an anion selectivity (from calculated permeability ratios) of SCN (2.3), NO 3 (1.8), ClO 4 (1.7), Br (1.7), I (1.6), Cl (1.0), HCO 3 (0.5), gluconate (0.2). Bath additions of NPPB, flufenamate, glibenclamide (all 100 μm) and DIDS (500 μm) produced varying degrees of block of OR currents with NPPB being the most potent (IC50 of approximately 50 μm) while DIDS was the least effective. Linear chloride currents had similar current densities to the OR chloride currents and were also time- and voltage-independent. The anion selectivity sequence was SCN (2.5), NO 3 (1.9), Br (1.4), I (1.1), Cl (1.0), ClO 4 (0.5), HCO 3 (0.5), gluconate (0.3). In contrast to the OR conductance, glibenclamide was the most potent and DIDS the least potent blocker of L currents. An IC50 of >100 μm was observed for NPPB block. Neither OR of L chloride currents were affected by acutely or chronically increased intracellular cAMP and were not affected when intracellular Ca2+ levels were increased or decreased. The molecular identity and physiological role of OR and linear currents in mIMCD-3 cells are discussed. Received: 13 June 1995/Revised: 15 September 1995  相似文献   

13.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl) channel known to influence the function of other channels, including connexin channels. To further study potential functional interactions between CFTR and gap junction channels, we have co-expressed CFTR and connexin45 (Cx45) in Xenopus oocytes and monitored junctional conductance and voltage sensitivity by dual voltage clamp electrophysiology. In single oocytes expressing CFTR, an increase in cAMP caused by forskolin application induced a Cl current and increased membrane conductance; application of diphenylamine carboxylic acid (CFTR blocker) readily blocked the Cl current. With co-expression of CFTR and Cx45, application of forskolin to paired oocytes induced a typical outward current and increased junctional conductance (Gj). In addition, the presence of CFTR reduced the transjunctional voltage sensitivity of Cx45 channels without affecting the kinetics of junctional current inactivation. The drop in voltage sensitivity was further enhanced by forskolin application. The data indicate that CFTR influences cell-to-cell coupling mediated by Cx45 channels.  相似文献   

14.
We report that Drosophila retinal photoreceptors express inwardly rectifying chloride channels that seem to be orthologous to mammalian ClC-2 inward rectifier channels. We measured inwardly rectifying Cl currents in photoreceptor plasma membranes: Hyperpolarization under whole-cell tight-seal voltage clamp induced inward Cl currents; and hyperpolarization of voltage-clamped inside-out patches excised from plasma membrane induced Cl currents that have a unitary channel conductance of ∼3.7 pS. The channel was inhibited by 1 mM Zn2+ and by 1 mM 9-anthracene, but was insensitive to DIDS. Its anion permeability sequence is Cl = SCN> Br>> I, characteristic of ClC-2 channels. Exogenous polyunsaturated fatty acid, linolenic acid, enhanced or activated the inward rectifier Cl currents in both whole-cell and excised patch-clamp recordings. Using RT-PCR, we found expression in Drosophila retina of a ClC-2 gene orthologous to mammalian ClC-2 channels. Antibodies to rat ClC-2 channels labeled Drosophila photoreceptor plasma membranes and synaptic regions. Our results provide evidence that the inward rectification in Drosophila retinal photoreceptors is mediated by ClC-2-like channels in the non-transducing (extra-rhabdomeral) plasma membrane, and that this inward rectification can be modulated by polyunsaturated fatty acid. G. Ugarte and R. Delgado contributed equally to this work.  相似文献   

15.
The role of swelling-activated currents in cell volume regulation is unclear. Currents elicited by swelling rabbit ventricular myocytes in solutions with 0.6–0.9× normal osmolarity were studied using amphotericin perforated patch clamp techniques, and cell volume was examined concurrently by digital video microscopy. Graded swelling caused graded activation of an inwardly rectifying, time-independent cation current (ICir,swell) that was reversibly blocked by Gd3+, but ICir,swell was not detected in isotonic or hypertonic media. This current was not related to IK1 because it was insensitive to Ba2+. The PK/PNa ratio for ICir,swell was 5.9 ± 0.3, implying that inward current is largely Na+ under physiological conditions. Increasing bath K+ increased gCir,swell but decreased rectification. Gd3+ block was fitted with a K 0.5 of 1.7 ± 0.3 μM and Hill coefficient, n, of 1.7 ± 0.4. Exposure to Gd3+ also reduced hypotonic swelling by up to ∼30%, and block of current preceded the volume change by ∼1 min. Gd3+-induced cell shrinkage was proportional to ICir,swell when ICir,swell was varied by graded swelling or Gd3+ concentration and was voltage dependent, reflecting the voltage dependence of ICir,swell. Integrating the blocked ion flux and calculating the resulting change in osmolarity suggested that ICir,swell was sufficient to explain the majority of the volume change at –80 mV. In addition, swelling activated an outwardly rectifying Cl current, ICl,swell. This current was absent after Cl replacement, reversed at ECl, and was blocked by 1 mM 9-anthracene carboxylic acid. Block of ICl,swell provoked a 28% increase in swelling in hypotonic media. Thus, both cation and anion swelling-activated currents modulated the volume of ventricular myocytes. Besides its effects on cell volume, ICir,swell is expected to cause diastolic depolarization. Activation of ICir,swell also is likely to affect contraction and other physiological processes in myocytes.  相似文献   

16.
Cell swelling has been shown to increase the permeability of the plasma membrane to ions such as K+, Na+, Ca2+ or Cl in many types of cells. In cardiac cells, swelling has been reported to increase Cl conductance, but whether cation-selective currents are activated by swelling is not known. Low Cl or Cl-free solutions were used to study the presence of such currents. Lowering the osmolarity of the extracellular medium from 299 to 219 mOsm resulted in cell swelling and concurrent activation of a cation-selective whole-cell current. When cell-attached patches were formed on swollen cells, opening of bursting single channel currents were observed in 18% of the patches studied. Ion substitution experiments indicated that the channel discriminated poorly among monovalent cations, and was impermeable to Cl. The channel was permeable to Ca2+. In symmetrical 140 mM K+, the current-voltage relation was linear with a single channel conductance of 36 ± 3 pS. Depolarization increased channel open probability. Interestingly, depending on the membrane patch studied, application of negative pressure to the pipette caused either an increase or a decrease in the open probability of the channel already activated by swelling. Thus, the sensitivity to tension of the swelling-activated channel was different from those of previously reported stretch-activated channels. These findings suggest that nonselective cation channels exist in rat atrial cells and may be involved in swelling-induced changes in cell function.Dr. Kim is an Established Investigator of the American Heart Association.  相似文献   

17.
Permeation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels by halide ions was studied in stably transfected Chinese hamster ovary cells by using the patch clamp technique. In cell-attached patches with a high Cl pipette solution, the CFTR channel displayed outwardly rectifying currents and had a conductance near the membrane potential of 6.0 pS at 22°C or 8.7 pS at 37°C. The current–voltage relationship became linear when patches were excised into symmetrical, N-tris(hydroxymethyl)methyl-2-aminomethane sulfonate (TES)-buffered solutions. Under these conditions, conductance increased from 7.0 pS at 22°C to 10.9 pS at 37°C. The conductance at 22°C was ∼1.0 pS higher when TES and HEPES were omitted from the solution, suggesting weak, voltage-independent block by pH buffers. The relationship between conductance and Cl activity was hyperbolic and well fitted by a Michaelis-Menten–type function having a K m of ∼38 mM and maximum conductance of 10 pS at 22°C. Dilution potentials measured with NaCl gradients indicated high anion selectivity (PNa/PCl = 0.003–0.028). Biionic reversal potentials measured immediately after exposure of the cytoplasmic side to various test anions indicated PI (1.8) > PBr (1.3) > PCl (1.0) > PF (0.17), consistent with a “weak field strength” selectivity site. The same sequence was obtained for external halides, although inward F flow was not observed. Iodide currents were protocol dependent and became blocked after 1–2 min. This coincided with a large shift in the (extrapolated) reversal potential to values indicating a greatly reduced I/Cl permeability ratio (PI/PCl < 0.4). The switch to low I permeability was enhanced at potentials that favored Cl entry into the pore and was not observed in the R347D mutant, which is thought to lack an anion binding site involved in multi-ion pore behavior. Interactions between Cl and I ions may influence I permeation and be responsible for the wide range of PI/PCl ratios that have been reported for the CFTR channel. The low PI/PCl ratio usually reported for CFTR only occurred after entry into an altered permeability state and thus may not be comparable with permeability ratios for other anions, which are obtained in the absence of iodide. We propose that CFTR displays a “weak field strength” anion selectivity sequence.  相似文献   

18.
Intestinal Cl secretion is stimulated by cyclic AMP (cAMP) and intracellular calcium ([Ca2+]i). Recent studies show that protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) are downstream targets of cAMP. Therefore, we tested whether both PKA and Epac are involved in forskolin (FSK)/cAMP-stimulated Cl secretion. Human intestinal T84 cells and mouse small intestine were used for short circuit current (Isc) measurement in response to agonist-stimulated Cl secretion. FSK-stimulated Cl secretion was completely inhibited by the additive effects of the PKA inhibitor, H89 (1 µM), and the [Ca2+]i chelator, 1,2-bis-(o-aminophenoxy)-ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM; 25 µM). Both FSK and the Epac activator 8-pCPT-2’-O-Me-cAMP (50 µM) elevated [Ca2+]i, activated Ras-related protein 2, and induced Cl secretion in intact or basolateral membrane–permeabilized T84 cells and mouse ileal sheets. The effects of 8-pCPT-2’-O-Me-cAMP were completely abolished by BAPTA-AM, but not by H89. In contrast, T84 cells with silenced Epac1 had a reduced Isc response to FSK, and this response was completely inhibited by H89, but not by the phospholipase C inhibitor U73122 or BAPTA-AM. The stimulatory effect of 8-pCPT-2’-O-Me-cAMP on Cl secretion was not abolished by cystic fibrosis transmembrane conductance (CFTR) inhibitor 172 or glibenclamide, suggesting that CFTR channels are not involved. This was confirmed by lack of effect of 8-pCPT-2’-O-Me-cAMP on whole cell patch clamp recordings of CFTR currents in Chinese hamster ovary cells transiently expressing the human CFTR channel. Furthermore, biophysical characterization of the Epac1-dependent Cl conductance of T84 cells mounted in Ussing chambers suggested that this conductance was hyperpolarization activated, inwardly rectifying, and displayed a Cl>Br>I permeability sequence. These results led us to conclude that the Epac-Rap-PLC-[Ca2+]i signaling pathway is involved in cAMP-stimulated Cl secretion, which is carried by a novel, previously undescribed Cl channel.  相似文献   

19.
Activation of the CFTR Cl channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis transmembrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl currents. Similar to CFTR, ClC-0 Cl currents also inhibit ENaC, as well as high extracellular Na+ and Cl in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl.  相似文献   

20.
A Ca2+-activated Cl conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mm ATP and 1 μm free Ca2+ and bathed in N-methyl-d-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nm or less than 1 nm free Ca2+ strongly reduced the Cl currents, indicating the currents were Ca2+-dependent. Relaxation analysis of the ``on' currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl channels was: NO 3 (2.00) > I (1.85) ≥ Br (1.69) > Cl (1.00) > bicarbonate (0.77) ≥ acetate (0.70) > propionate (0.41) ≫ glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mm, the Ca2+-dependency of the Cl current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-γS (2 mm) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mm). The addition of the calmodulin inhibitors trifluoperazine (100 μm) or calmidazolium (25 μm) to the bath solution and the inclusion of KN-62 (1 μm), a specific inhibitor of calmodulin kinase, or staurosporin (10 nm), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca2+-activated Cl currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca2+-activated Cl currents. The outward Cl currents at +69 mV were inhibited by NPPB (100 μm), IAA-94 (100 μm), DIDS (0.03–1 mm), 9-AC (300 μm and 1 mm) and DPC (1 mm), whereas the inward currents at −101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells. Received: 9 January 1996/Revised: 20 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号