首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Two group I intron-encoded proteins from the yeast mitochondrial genome have already been shown to have a specific DNA endonuclease activity. This activity mediates intron insertion by cleaving the DNA sequence corresponding to the splice junction of an intronless strain. We have discovered in mitochondrial extracts from the yeast strain 777-3A a new DNA endonuclease activity which cleaves the fused exon A3-exon A4 junction sequence of the COXI gene.  相似文献   

3.
In yeast and animals, replication of the mitochondrial genome is carried out by the DNA polymerase gamma. In mammals this polymerase is composed of a catalytic and an accessory subunit. Yeast DNA polymerase gamma was purified over 6600-fold from mitochondria. The catalytic polypeptide of this enzyme was identified as a 135-kDa protein by a photochemical crosslinking procedure and its native molecular weight was estimated between 120 and 140 kDa by gel filtration and glycerol gradient sedimentation. These results indicate that yeast DNA polymerase gamma contains only one subunit and thus has a different quaternary structure from its counterpart in animals.  相似文献   

4.
A new DNA polymerase activity, distinct from DNA polymerase gamma, has been identified in bovine heart mitochondria. First detected among proteins isolated in a complex with mitochondrial DNA, the DNA polymerase activity has been partially purified 47,000-fold. Enzyme activity separates from DNA polymerase gamma on several chromatographic columns and appears to copurify with a 38 +/- 2-kDa polypeptide. Unlike DNA polymerase gamma, this enzyme is relatively resistant to inhibition by N-ethylmaleimide and dideoxynucleotides, has moderately low monovalent and high divalent cation requirements, and possesses 20-fold-higher apparent K(m) values for deoxynucleotides. The enzyme polymerizes deoxynucleotides onto a primed template DNA in a relatively nonprocessive fashion and lacks a detectable 3' to 5' exonuclease activity. Many of these characteristics resemble a beta-like mitochondrial DNA polymerase previously identified in, and considered unique to, trypanosomes. We propose that the bovine and trypanosomal enzymes are related and represent a new class of ubiquitous mitochondrial DNA polymerases.  相似文献   

5.
The activity of DNA polymerase I from Saccharomyces cerevisiae is inhibited, in a dose-dependent fashion, by the oncogenic beta-blocker 1-(2-nitro-3-methyl-phenoxy)-3-tert-butylamino-propan-2-ol (ZAMI 1305) and by the non-oncogenic beta-blockers 1-(2-nitro-5-methyl-phenoxy)-3-tert-butylamino-propan-2-ol (ZAMI 1327), atenolol, and propranolol, the latter having the highest inhibiting activity. The inhibition is due to an interaction of the beta-blockers with the free enzyme and with the enzyme-DNA complex. The degree of inhibition is directly related to the hydrophobicity of the aromatic moiety and to the length and hydrophilicity of the aliphatic chain of the inhibitor. No relation seems to exist between the in vitro inhibition of yeast DNA polymerase I by beta-blockers and their oncogenic activity.  相似文献   

6.
DNA synthesis in isolated yeast mitochondria   总被引:2,自引:0,他引:2  
  相似文献   

7.
A DNA-directed DNA polymerase has been isolated from murine liver mitochondria. The mitochondrial DNA polymerase is distinguishable from other DNA polymerases found in the nucleus and cytosol of murine cells by several enzymatic and physical properties. It is stimulated 5--6-fold by 0.15 M KCl, does not require a sulfhydryl reducing agent for activity, and is inhibited by ethidium bromide or ATP. The enzyme has a sedimentation coefficient of 8.8 S in the presence of up to 0.5 M KCl, a molecular weight of 150--170000, and utilizes natural templates in the following order of preference: activated DNA (100%), single stranded DNA (24%), and native DNA (5%).  相似文献   

8.
9.
Two forms of DNA-dependent ATPase activity were previously purified from the yeast Saccharomyces cerevisiae and characterized (Plevani, P., Badaracco, G., and Chang, L. M. S. (1980) J. Biol. Chem. 255, 4957-4963). Here, an additional DNA-dependent ATPase (ATPase III) has been purified from S. cerevisiae to near homogeneity. This ATPase differs from those described previously in its chromatographic properties, molecular weight, reaction properties and immunological relatedness. Its molecular weight is about 63,000 in the presence of sodium dodecyl sulfate. It hydrolyzes ATP to ADP and orthophosphate in the presence of DNA as an effector. In addition, yeast DNA polymerase I, which is a true DNA replicase of yeast, is stimulated severalfold by this ATPase. Neither yeast DNA polymerase II nor prokaryotic DNA polymerases are stimulated. This stimulation is intrinsic to the ATPase activity, since both activities copurified in the last four steps of purification, showed the same heat stability and showed dependence on and hydrolysis of ATP. The ATPase III preparation also contains a DNA-unwinding (DNA helicase) activity, which unwinds double-stranded DNA in the presence of ATP. In the S. cerevisiae radiation-sensitive mutant rad3, no significant ATPase III activity could be detected, suggesting that the RAD3 gene, which codes for a different polypeptide, regulates the expression of ATPase III activity.  相似文献   

10.
DNA polymerase I and DNA primase complex in yeast   总被引:10,自引:0,他引:10  
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I.  相似文献   

11.
12.
DNA polymerase delta: a second eukaryotic DNA replicase   总被引:2,自引:0,他引:2  
During the past few years significant progress has been made in our understanding of the structure and function of the proteins involved in eukaryotic DNA replication. Data from several laboratories suggest that, in contrast to prokaryotic DNA replication, two distinct DNA polymerases are required for eukaryotic DNA replication, i.e. DNA polymerase delta for the synthesis of the leading strand and DNA polymerase alpha for the lagging strand. Several accessory proteins analogous to prokaryotic replication factors have been identified and some of these are specific for pol delta whereas others affect both DNA replicases. The replicases and their accessory proteins appear to be highly conserved in eukaryotes, as homologous proteins have been found in species ranging from humans to yeast.  相似文献   

13.
An insoluble DNA polymerase activity that replicates the intact chromatin template at 85% of the rate found in vivo has been partially characterized. HeLa cells, encapsulated in agarose microbeads, are lysed using an isotonic salt concentration: the resulting encapsulated nuclei contain polymerase associated with a nucleoskeleton and the unbroken template. This preparation can be manipulated freely without aggregation or breaking the DNA and yet is accessible to enzymes and other probes. The major activity, which is sensitive to aphidicolin, is found only in S-phase nuclei and replicates DNA semi-conservatively, forming intermediates that are ligated efficiently into larger products.  相似文献   

14.
15.
Mitochondrial genomes in higher plants are much larger and more complex as compared to animal mitochondrial genomes. There is growing evidence that plant mitochondrial genomes exist predominantly as a collection of linear and highly branched DNA molecules and replicate by a recombination-dependent mechanism. However, biochemical evidence of mitochondrial DNA (mtDNA) recombination activity in plants has previously been lacking. We provide the first report of strand-invasion activity in plant mitochondria. Similar to bacterial RecA, this activity from soybean is dependent on the presence of ATP and Mg(2+). Western blot analysis using an antibody against the Arabidopsis mitochondrial RecA protein shows cross-reaction with a soybean protein of about 44 kDa, indicating conservation of this protein in at least these two plant species. mtDNA structure was analyzed by electron microscopy of total soybean mtDNA and molecules recovered after field-inversion gel electrophoresis (FIGE). While most molecules were found to be linear, some molecules contained highly branched DNA structures and a small but reproducible proportion consisted of circular molecules (many with tails) similar to recombination intermediates. The presence of recombination intermediates in plant mitochondria preparations is further supported by analysis of mtDNA molecules by 2-D agarose gel electrophoresis, which indicated the presence of complex recombination structures along with a considerable amount of single-stranded DNA. These data collectively provide convincing evidence for the occurrence of homologous DNA recombination in plant mitochondria.  相似文献   

16.
DNA polymerase of mitochondria is a gamma-polymerase.   总被引:20,自引:0,他引:20  
Mitochondria isolated from rat liver cells or mycoplasma-free HeLa cells contain a single DNA polymerase activity which is closely related to, or identical to, the DNA polymerase gamma activity found in the homologous cell. In rat liver cells, about 16% of the total cytoplasmic gamma-polymerase activity is found associated with mitochondria and in HeLa cells about 20% of the total cellular gamma-polymerase is mitochondria associated. Since mitochondria possess no unique DNA polymerase activity, the number of DNA polymerases now known in mammalian cells is reduced, from the previously proposed four enzymes, to three--DNA polymerases alpha, beta, and gamma.  相似文献   

17.
A particulate fraction of adult rat brain (sucrose buoyant density 1.24 gm/ml) catalyzed the incorporation of [3H]dTTP into an acid-insoluble product in an endogenously templated reaction sensitive to ribonuclease pretreatment. Upon fractionation, this activity was identified in the cerebellum, pons, frontal lobes and base. The DNA polymerase present in these brain fractions exhibited a strong preference for the synthetic template dT12–18·poly rA rather than dT12–18·poly dA; dT10 was completely inactive. Purification and equilibrium Cs2SO4 gradient centrifugation of the [3H]DNA product-endogenous template complex suggested that RNA was serving as primer for endogenous DNA synthesis.  相似文献   

18.
Transfer RNA methylating activity of yeast mitochondria   总被引:2,自引:1,他引:2       下载免费PDF全文
Mitochondria isolated from Saccharomyces cerevisiae and purified in Urografin or sucrose gradient contain tRNA methylating activity with specificities different from those of the cytoplasm. The main reaction product, using E.coli tRNA as methyl group acceptor, is N2,-N2-dimethylguanine. The corresponding mitochondrial methylase is coded by nuclear DNA. A DNA methylating activity is also associated with yeast mitochondria.  相似文献   

19.
The yeast REV3 gene encodes the catalytic subunit of DNA polymerase zeta (pol zeta), a B family polymerase that performs mutagenic DNA synthesis in cells. To probe pol zeta mutagenic functions, we generated six mutator alleles of REV3 with amino acid replacements for Leu979, a highly conserved residue inferred to be at the pol zeta active site. Replacing Leu979 with Gly, Val, Asn, Lys, Met or Phe resulted in yeast strains with elevated UV-induced mutant frequencies. While four of these strains had reduced survival following UV irradiation, the rev3-L979F and rev3-L979M strains had normal survival, suggesting retention of pol zeta catalytic activity. UV mutagenesis in the rev3-L979F background was increased when photoproduct bypass by pol eta was eliminated by deletion of RAD30. The rev3-L979F mutation had little to no effect on mutagenesis in an ogg1Delta background, which cannot repair 8-oxo-guanine in DNA. UV-induced can1 mutants from rev3-L979F and rad30Deltarev3-L979F strains primarily contained base substitutions and complex mutations, suggesting error-prone bypass of UV photoproducts by L979F pol zeta. Spontaneous mutation rates in rev3-L979F and rev3-L979M strains are elevated by about two-fold overall and by two- to eight-fold for C to G transversions and complex mutations, both of which are known to be generated by wild-type pol zetain vitro. These results indicate that Rev3p-Leu979 replacements reduce the fidelity of DNA synthesis by yeast pol zetain vivo. In conjunction with earlier studies, the data establish that the conserved amino acid at the active site location occupied by Leu979 is critical for the fidelity of all four yeast B family polymerases. Reduced fidelity with retention of robust polymerase activity suggests that the homologous rev3-L979F allele may be useful for analyzing pol zeta functions in mammals, where REV3 deletion is lethal.  相似文献   

20.
Rolling circle replication of DNA in yeast mitochondria.   总被引:12,自引:4,他引:12       下载免费PDF全文
The conformation of mitochondrial DNA (mtDNA) from yeasts has been examined by pulsed field gel electrophoresis and electron microscopy. The majority of mtDNA from Candida (Torulopsis) glabrata (mtDNA unit size, 19 kb) exists as linear molecules ranging in size from 50 to 150 kb or 2-7 genome units. A small proportion of mtDNA is present as supercoiled or relaxed circular molecules. Additional components, detected by electron microscopy, are circular molecules with either single- or double-stranded tails (lariats). The presence of lariats, together with the observation that the majority of mtDNA is linear and 2-7 genome units in length, suggests that replication occurs by a rolling circle mechanism. Replication of mtDNA in other yeasts is thought to occur by the same mechanism. For Saccharomyces cerevisiae, the majority of mtDNA is linear and of heterogeneous length. Furthermore, linear DNA is the chief component of a plasmid, pMK2, when it is located in the mitochondrion of baker's yeast, although only circular DNA is detected when this plasmid occurs in the nucleus. The implications of long linear mtDNA for hypotheses concerning the ploidy paradox and the mechanism of the petite mutation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号